Communication-avoiding optimization methods for fermion matrix inverters

Alexei Strelchenko

Scientific Computing Division @ Fermilab

July 23, 2018
Overview

- **ECP activity**
 - ECP solver group communicates with P. Eller, UIUC, and M. Hoemmen, Sandia Lab

- **CA optimization approaches**
 - Computation optimization (power-kernels, block orth. etc.)
 - Algorithm optimization (pipelining, enlarged search subspace)

- **Numerical stability**

- **Trilinos library**
 - CA optimized algorithms and kernels (TSQRT, iter. solvers and preconditioners)
CA solvers in focus

- S-step Krylov solvers
- Pipelined solvers:
 - Ghysels and Vanroose (PipePCG algorithm)
 - Gropp and Eller (Pipe2PCG algorithm)
 - Cornelis, Cools and Vanroose (Deep pipelined p(l)-PCG)
- EKS and Block methods:
 - Grigori et al (SRE-CG)
Two-term recurrence pipelined PCG scheme

1. Input: problem matrix A, precond. matrix M, source vector x.
2. Output: solution vector x.
3. $r_0 = b - Ax_0$, $u_0 = Mr_0$, $w_0 = Au_0$
4. $\delta_0 = (w_0, u_0)$, $\gamma_0 = (r_0, u_0)$, $\text{norm}(u_0)$
5. Start main loop:
6. Compute CG coefficients α, β
7. Update iter. residual, solution and aux fields: 8 saxpy’s
8. $\delta_j = (w_j, u_j)$, $\gamma_j = (r_j, u_j)$, $\text{norm}(u_j)$
9. $m_j = Mw_j$, $n_j = Am_j$
Three-term recurrence pipelined PCG scheme

1. Input: problem matrix A, precond. matrix M, source vector x.
2. Output: solution vector x.
3. $r_0 = b - Ax_0$, $u_0 = Mr_0$, $w_0 = Au_0$
4. $\delta_0 = (w_0, u_0)$, $\gamma_0 = (r_0, u_0)$, $\text{norm}(u_0)$
5. $p_0 = Mw_0$, $q_0 = Ap_0$
6. $c_0 = Mq_0$, $d_0 = Ac_0$
7. Start main loop (combined two iterations):
8. Compute CG coefficients
9. Update iter. residual, solution and aux fields: 14 saxpy’s
10. Compute 10 dot products
11. $c_j = Mq_j$, $d_j = Ac_j$
12. $g_j = Md_j$, $h_j = Ag_j$
Partition the lattice into \(t \) subdomains

Split the residual \(r_0 \) into \(t \) vectors corresponding to the \(t \) domains:

\[
\begin{bmatrix}
\ast & 0 & 0 & \cdots & 0 \\
\ast & 0 & 0 & \cdots & 0 \\
0 & \ast & 0 & \cdots & 0 \\
0 & \ast & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \ast \\
0 & 0 & 0 & \cdots & \ast \\
\end{bmatrix}
\]

The EKS solver generates \(t \) new basis vectors to obtain an enlarged Krylov subspace

\[
K_{t,k+1}(A,r_0) = \text{Span}\{T(r_0),AT(r_0),\ldots,A^kT(r_0)\}
\]

The approximate solution: \(x_{k+1} \in x_0 + K_{t,k+1}(A,r_0) \)
The EKS is a superset of the classical KS: $K_{k+1} \subset K_{t,k+1}$

The enlarged subspaces are increasing subspaces, yet bounded

$$K_{t,1}(A,r_0) \subset \cdots \subset K_{t,k_{\text{max}}}(A,r_0) = K_{t,k_{\text{max}}+n}(A,r_0)$$

We can consider EKM as a particular case of a block Krylov method:

$$AX = T(b), \quad R_0 = T(b - Ax_0)$$
Enlarged CG algorithm

- Idea: use BlockCG framework for $R^0 = T(r_0)$
- The iter. residual $r_k = \sum_s R_s^{(k)}$
- The final solution $x = \sum_s X_s$
- The ECG converged in $k_{max}^{ECG} \leq k_{max}^{CG}$
1 $x_0 = 0, \; R^{(0)} = T(b - Ax_0)$.
2 $V^{(0)} = A$-orthonormalize($R^{(0)}$)
3 Start main loop until $|| \sum_{s=0}^{t} R_s^{(k)} || < \epsilon \ast ||b||$:
4 $V^{(k)} = AV^{(k-1)}$
A-orthonormalize against $V^{(k-1)}$ and $V^{(k-2)}$:
5 $V^{(k)} = V^{(k)} - V^{(k-1)} V^{(k-1)T} AV^{(k)} - V^{(k-2)} V^{(k-2)T} AV^{(k)}$
6 $V^{(k)} = A$-orthonormalize($V^{(k)}$)
7 $T^{(k)} = V^{(k)} T^{(k-1)}$
8 $X^{(k)} = X^{(k-1)} + V^{(k)} T^{(k)}$
9 $R^{(k)} = R^{(k-1)} - AV^{(k)} T^{(k)}$
10 $T^{(k)} = V^{(k)} T^{(k)} AR^{(k)}$

The solution $x = \sum_{s=0}^{t} X_s^{(k)}$:
Numerical stability of CA solvers

- Residual gap for classic CG algorithm:

\[f_{i+1} = b - A\bar{x}_{i+1} - \bar{r}_{i+1} = f_0 - \sum_{k=0}^{i}(Ae^x_k + e^r_k) \]

- Local rounding errors are trivially accumulated in residual gap

- Unfortunately, for the CA optimized versions rounding errors propagation pattern is much more complicated: (see, e.g. Cools, arXiv:1804.02962)

\[f_{i+1} = f_0 - \sum_{k=0}^{i} F(e^x_k, e^r_k, e^p_k, e^u_k, ...) \]
Numerical stability of CA solvers

- In general, 3-term algo is less stable than 2-term one
 - M. Gutknecht, Z.Strakos, 2000
- (deep) pipelines further aggravate rounding error effects
Issues with variable preconditioning

- The precond. residual itself is computed via recursion:

 \[u_{i+1} = M^{-1}r_{i+1} = M^{-1}(r_i - \alpha_is_{i+1}) \approx u_i - \alpha_iq_{i+1} \]

- that is inexact even in exact arithmetics!

- \[\rightarrow \] accumulation of errors in the preconditioned residual \(u_{i+1} \)
Idea: improve BCG algorithm stability by performing a QR decomposition of the residual matrix R_k before constructing the descent directions

$$V^{(k)} = P^{(k)}C^{(k-1)}$$

1. $X^{(0)} = 0$, $Q^{(0)}C^{(0)} = B$, $S^{(0)} = I$, $P^{(0)} = 0$.
2. Start main loop:
3. $P^{(k)} = Q^{(k-1)} + P^{(k-1)}S^{(k-1)}T$
4. $T^{(k)} = (P^{(k)}TAP^{(k)})^{-1}$
5. $X^{(k)} = X^{(k-1)} + P^{(k)}T^{(k)}C^{(k-1)}$
6. $Q^{(k)}S^{(k)} = Q^{(k-1)} - AP^{(k)}T^{(k)}$
7. $C^{(k)} = S^{(k)}C^{(k-1)}$
Example: mixed precision pipePCG

Test setup:
- Size: $32^3 \times 256$
- Outer solver: pipePCG ($tol = 1e^{-8}$)
- Inner solver: minRes (10 iters)
- Precision of outer solver: single
- Precision of inner solver: half

16 FNAL GPU nodes (4 K40m per node)
- Convergence in 65 iters
- Residual replacements: 10
- Asynchronous global reduction: 1.2 secs
- Blocking (single) global reduction: 2.9 secs
Trilinos library

- Approaches
 - Access to Trilinos iterative solvers and preconditioners
 - Access to low-level (CA) kernels
- Kokkos support
- Testing platform
Access to algorithms

- Looking at Belos package:
 - Solver managers (BCGrQ, BGMRESDR etc.)
 - Interfaces to linear algebra, orthog. methods etc.

- Two main solvers stacks for sparse LA and parallel data redistribution facilities:
 - Epetra
 - Tpetra

- Memory management (Teuchos):
 - BLAS and LAPACK wrappers, smart pointers, parameter lists, and XML parsers
Access to CA optimized methods of Tpetra

- Uses the Kokkos sm parallel programming model
 - OpenMP
 - POSIX threads
 - CUDA
- Several impl. for TSQR (CUDA - currently WIP)
- Testing platform: QUDA within Singularity HPC containers
Operator interface

/// \class Operator
/// \brief Abstract interface for operators (e.g., matrices and
/// preconditioners).
///
/// \tparam Scalar The type of the entries of the input and output
/// MultiVector objects.
/// \tparam LocalOrdinal The type of local indices.
/// \tparam GlobalOrdinal The type of global indices.
/// \tparam Node The Kokkos Node type.
///
/// An Operator takes a MultiVector as input, and fills a given
/// output MultiVector with the result.
///
/// Operator is just an interface, not an implementation. Many
/// different classes implement this interface, including sparse
/// matrices, direct solvers, iterative solvers, and
/// preconditioners.

\template<
 \class Scalar = ::Tpetra::Details::DefaultTypes::scalar_type,
 \class LocalOrdinal = ::Tpetra::Details::DefaultTypes::local_ordinal_type,
 \class GlobalOrdinal = ::Tpetra::Details::DefaultTypes::global_ordinal_type,
 \class Node = ::Tpetra::Details::DefaultTypes::node_type>

class Operator : virtual public Teuchos::Describable { ...

 ...
Map class

///
/// \class Map
///
/// \brief A parallel distribution of indices over processes.
///
/// \tparam LocalOrdinal The type of local indices (int).
/// \tparam GlobalOrdinal The type of global indices (int or long).
/// \tparam Node A class implementing on-node shared-memory parallel
/// operations.
/// \tparam The default \c Node type should suffice for most users.
/// \tparam The actual default type depends on your Trilinos build options.
/// \tparam This must be one of the following:
/// \c Kokkos::Compat::KokkosCudaWrapperNode
/// \c Kokkos::Compat::KokkosOpenMPWrapperNode
/// \c Kokkos::Compat::KokkosThreadsWrapperNode
/// \c Kokkos::Compat::KokkosSerialWrapperNode
/// \tparam Requires the Teuchos memory management classes.
/// \tparam Allows for "overlapping Maps"

template <class LocalOrdinal
 = ::Tpetra::Details::DefaultTypes::local_ordinal_type,
 class GlobalOrdinal
 = ::Tpetra::Details::DefaultTypes::global_ordinal_type,
 class Node = ::Tpetra::Details::DefaultTypes::node_type>
class Map : public Teuchos::Describable { ...
Singularity HPC containers (joined effort with Jim Simone)

- Developed for HPC type infrastructure (and "untrusted users")
 - can be executed like a native program or script
 - simple integration with job schedulers
 - bind host system driver libraries (e.g., NVIDIA GPU driver libs)
- Support several (convertable) container formats (squashfs, extfs, dir)
- Compatible with docker
- Valuable development tool for Trilinos framework
Building the stuff

```bash
1  cmake -D CMAKE_CXX_COMPILER=mpicxx \
2     -D Trilinos_CXX11_FLAGS="--expt-extended-lambda" \
3     -D TPL_ENABLE_MPI=ON \ 
4     -D TPL_ENABLE_CUDA=ON \ 
5     -D Kokkos_ENABLE_Cuda=ON \ 
6     -D KOKKOS_ARCH=Pascal61 \ 
7     -D Kokkos_ENABLE_Cuda_UVM=ON \ 
8     -D Kokkos_ENABLE_Cuda_Lambda_BOOL=ON \ 
9     -D Trilinos_ENABLE_Epetra=OFF \ 
10    -D Trilinos_ENABLE_Tpetra=ON \ 
11    -D Trilinos_ENABLE_Belos=ON  $TRILINOS_PATH 
```
Running containers

- Start singularity shell session:
 singularity exec --nv -B /usr/bin:/opt/nvidia ohpc-cuda-tril.simg bash
 - `--nv` option needed to bind GPU environment

- Run the application:
 ./trilinos_block_invert_test --recon 12 --prec double --dslash-type wilson
 --dim 16 16 16 16 --mass -0.8 --tol 1e-10 --niter 250 --nsrc 8 --msrc 8
Running containers (cont.)

TimeMonitor results over 1 processor

<table>
<thead>
<tr>
<th>Timer Name</th>
<th>Global time (num calls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belos: BlockCGSolver total solve time</td>
<td>35.71 (1)</td>
</tr>
<tr>
<td>Belos: DGKS[2]: Ortho (Inner Product)</td>
<td>2.618 (816)</td>
</tr>
<tr>
<td>Belos: DGKS[2]: Ortho (Norm)</td>
<td>0.2268 (2376)</td>
</tr>
<tr>
<td>Belos: DGKS[2]: Ortho (Update)</td>
<td>2.59 (816)</td>
</tr>
<tr>
<td>Belos: DGKS[2]: Orthogonalization</td>
<td>6.877 (108)</td>
</tr>
<tr>
<td>Belos: Operation Op*x</td>
<td>21.63 (108)</td>
</tr>
<tr>
<td>Belos: Operation Prec*x</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

------------ Actual Residuals (normalized) ---------

Problem 0 : 9.85637e-11
Problem 1 : 8.2153e-11
Problem 2 : 9.18115e-11
Problem 3 : 9.66285e-11
Problem 4 : 7.94028e-11
Problem 5 : 8.89036e-11
Problem 6 : 8.48587e-11
Problem 7 : 8.24447e-11

End Result: TEST PASSED

Figure: Trilinos execution
Conclusion

- **Pipelined:**
 - Optimized global comms but may effect convergence
 - Increase arithmetic intensity: merged LA operations
 - Already enabled in a number of solvers

- **EKS:**
 - Decrease num. of iterations and global comms
 - Increase arithmetic intensity: block LA, multi-rhs mat-vec
 - But this uses a block method for a single rhs: may not give an appropriate performance gain for LQCD tasks

- **Test of Trilinos’ solvers:**
 - matrix-free highly optimized impl. (Grid, Quda, QPhiX)
 - does require kokkos mapping (raw arrays vs kokkos view objects)

- **Test of Trilinos’ TSQR implementation (Trilinos tpetra package):**
 - idea is to consider Trilinos as a collection of specialized low-level LA routines
 - no (GPU-specific) kokkos realization for TSQR yet, WIP