Temporal Correlators in the Continuous Time Limit of Strong Coupling Lattice QCD

Marc Klegrewe and Wolfgang Unger
Bielefeld University

Lattice 2018
East Lansing, 27th July 2018
Study regime where *sign problems* can be made mild:
⇒ limit of infinite gauge coupling

\[g \to \infty, \quad \beta = \frac{2N_c}{g^2} \to 0 \]
QCD in the Strong Coupling Limit

Study regime where *sign problems* can be made mild:
⇒ limit of infinite gauge coupling

\[g \to \infty, \quad \beta = \frac{2N_c}{g^2} \to 0 \]

A change of integration order results in SC-partition function for *staggered fermions*:

\[
Z_{SC} = \sum_{\{n,k,l\}} \prod_x \frac{N_c!}{n_x!} (2am_q)^{n_x} \prod_{b=(x,\mu)} \frac{(N_c - k_b)!}{N_c! k_b!} \gamma^{2k_b \delta_{\mu 0}} \prod_l w(l, \mu)
\]

- **Monomers**
- **Mesonic hoppings/dimers**
- **Baryonic hoppings**

[Wolff & Rossi, 1984]
QCD in the Strong Coupling Limit

Study regime where *sign problems* can be made mild:

\[g \to \infty, \quad \beta = \frac{2N_c}{g^2} \to 0 \]

⇒ limit of infinite gauge coupling

A change of integration order results in SC-partition function for *staggered fermions*:

\[
Z_{SC} = \sum_{\{n,k,l\}} \prod_x \frac{N_c!}{n_x!} (2am_q)^{n_x} \prod_{b=(x,\mu)} \frac{(N_c - k_b)!}{N_c!k_b!} \gamma^{2k_b\delta_{\mu 0}} \prod_l w(l,\mu)
\]

- monomers
- mesonic hoppings/dimers
- baryonic hoppings

Fully combinatorial problem, restricted by *Grassmann constraint*:

\[
n_x + \sum_{\pm \mu} k_{x\mu} = N_c, \quad \sum_{\pm \mu} l_{x\mu} = 0, \forall x
\]

In the following restrict to *chiral limit* where monomer density \(\langle n \rangle = 0 \)

[Wolff & Rossi, 1984]
Continuous Time limit within Strong Coupling QCD

First: Introduction of *anisotropy* for continuous temperature variation:

\[
aT = \frac{1}{N_\tau} \Rightarrow aT = \frac{\xi(\gamma)}{N_\tau}, \quad \xi(\gamma) = \frac{a}{a_\tau}
\]

\(\xi(\gamma) \) is the anisotropy parameter.

Second: Gamma dependence of \(\xi(\gamma) \) non trivial:

\[
\xi(\gamma) \approx \kappa \gamma^2 + \gamma^4 + \lambda \gamma^4, \quad \kappa = 0.781 \text{ for SU(3)}
\]
Continuous Time limit within Strong Coupling QCD

First: Introduction of *anisotropy* for continuous temperature variation:

\[aT = \frac{1}{N\tau} \Rightarrow aT = \frac{\xi(\gamma)}{N\tau}, \quad \xi(\gamma) = \frac{a}{a\tau} \]

Second: Gamma dependence of \(\xi(\gamma) \) non trivial:

\[\xi(\gamma) \approx \kappa \gamma^2 + \frac{\gamma^2}{1 + \lambda \gamma^4}, \quad \kappa = 0.781 \text{ for SU}(3) \]

[de Forcrand, Unger & Vairinhos, 2018]
First: Introduction of *anisotropy* for continuous temperature variation:

\[aT = \frac{1}{N_\tau} \Rightarrow aT = \frac{\xi(\gamma)}{N_\tau}, \quad \xi(\gamma) = a/a_\tau \]

Second: Gamma dependence of \(\xi(\gamma) \) non trivial: [de Forcrand, Unger & Vairinhos, 2018]

\[\xi(\gamma) \approx \kappa \gamma^2 + \frac{\gamma^2}{1 + \lambda \gamma^4} \quad , \kappa = 0.781 \text{ for SU}(3) \]

Definition of the *Continuous Time Limit* as:

\[N_\tau \rightarrow \infty, \gamma \rightarrow \infty \text{ with } \frac{\xi(\gamma)}{N_\tau} = \frac{\kappa \gamma^2}{N_\tau} = aT \text{ fixed} \]
First: Introduction of \textit{anisotropy} for continuous temperature variation:

\[
aT = \frac{1}{N_\tau} \Rightarrow aT = \frac{\xi(\gamma)}{N_\tau}, \quad \xi(\gamma) = a/a_\tau
\]

Second: Gamma dependence of \(\xi(\gamma)\) non trivial: \[\text{[de Forcrand, Unger & Vairinhos, 2018]}\]

\[
\xi(\gamma) \approx \kappa \gamma^2 + \frac{\gamma^2}{1 + \lambda \gamma^4}, \quad \kappa = 0.781 \text{ for SU(3)}
\]

Definition of the \textit{Continuous Time Limit} as:

\[
N_\tau \to \infty, \gamma \to \infty \text{ with } \frac{\xi(\gamma)}{N_\tau} = \frac{\kappa \gamma^2}{N_\tau} = aT \text{ fixed}
\]

Continuous Time partition function:

\[
Z_{CT}(T) = \sum_{k \in 2\mathbb{N}} \left(\frac{1}{2aT}\right) \sum_{g' \in \Gamma_k} e^{\mu_B B/T} \hat{\nu}_T^{N_T}
\]

\[\hat{\nu}_T = \frac{2}{\sqrt{3}} : \begin{array}{c}
\end{array}\]

\[\hat{\nu}_L = 1 : \begin{array}{c}
\end{array}\]

\(N_c = 3:\) with \(k = \sum_{b=(x,i)} k_b, \ N_T = \sum_x n_T(x)\)
Benefits and Comments on Continuous Time Limit

- No discretization errors due to finite N_τ
- Only one parameter left (temperature T)
- Baryons become static for $N_c \geq 3 \Rightarrow$ no extend in spatial direction
 \Rightarrow Sign problem is absent
- Baryons are massive (even though in chiral limit)
- No multiple spatial dimers (suppressed by γ)

- Faster algorithm for medium to large temporal extends
Continuous Time Algorithm

- Worm-type Monte Carlo Algorithm
- *absorption* (even) and *emission* (odd) site decomposition of lattice

Mesonic worm update:
- Place *tail* of mesonic worm on lattice at absorption site

 \Rightarrow Violation of Grassmann constraint \Rightarrow propagate *head*

 restoration of Grassmann constraint if head at emission site
Continuous Time Algorithm

- Worm-type Monte Carlo Algorithm
- \textit{absorption} (even) and \textit{emission} (odd) site decomposition of lattice

\textbf{Mesonic worm update:}
- Place \textit{tail} of mesonic worm on lattice at absorption site

⇒ Violation of Grassmann constraint ⇒ propagate \textit{head}

\begin{itemize}
 \item restoration of Grassmann constraint if head at emission site
\end{itemize}

\[\text{T} \]

\[\text{H} \]

\[\text{t} \]
Continuous Time Algorithm

- Worm-type Monte Carlo Algorithm
- *absorption* (even) and *emission* (odd) site decomposition of lattice

Mesonic worm update:
- Place *tail* of mesonic worm on lattice at absorption site
 ⇒ Violation of Grassmann constraint ⇒ propagate *head*

restoration of Grassmann constraint if head at emission site
Continuous Time Algorithm

- Worm-type Monte Carlo Algorithm
- *absorption* (even) and *emission* (odd) site decomposition of lattice

Mesonic worm update:
- Place *tail* of mesonic worm on lattice at absorption site
 \Rightarrow Violation of Grassmann constraint \Rightarrow propagate *head*

 restoration of Grassmann constraint if head at emission site

[Adams & Chandrasekharan, 2003]
Continuous Time Algorithm

- Worm-type Monte Carlo Algorithm
- *absorption* (even) and *emission* (odd) site decomposition of lattice

Mesonic worm update:
- Place *tail* of mesonic worm on lattice at absorption site

⇒ Violation of Grassmann constraint ⇒ propagate *head*

restoration of Grassmann constraint if head at emission site
Continuous Time Algorithm

- Worm-type Monte Carlo Algorithm
- absorption (even) and emission (odd) site decomposition of lattice

Mesonic worm update:
- Place tail of mesonic worm on lattice at absorption site
 ⇒ Violation of Grassmann constraint ⇒ propagate head

restoration of Grassmann constraint if head at emission site
Continuous Time Algorithm

- Worm-type Monte Carlo Algorithm
- \textit{absorption} (even) and \textit{emission} (odd) site decomposition of lattice

Mesonic worm update:
- Place \textit{tail} of mesonic worm on lattice at absorption site
- \(\Rightarrow\) Violation of Grassmann constraint \(\Rightarrow\) propagate \textit{head}

 restoration of Grassmann constraint if head at emission site
Continuous Time Algorithm

- Worm-type Monte Carlo Algorithm
- \textit{absorption} (even) and \textit{emission} (odd) site decomposition of lattice

\textbf{Mesonic worm update:}
- Place \textit{tail} of mesonic worm on lattice at absorption site
\Rightarrow\text{Violation of Grassmann constraint} \Rightarrow \text{propagate} \textit{head}

restoration of Grassmann constraint if head at emission site

Weight of configuration ruled by spatial dimer emission/absorption
- \textit{spatial dimer emission} ruled by \textit{Poisson process}
- Vertex weights decide spatial dimer \textit{absorption}

\[P(\Delta \beta) \sim \exp(\lambda \Delta \beta), \quad \Delta \beta \in [0, \beta = 1/aT] \]
"decay constant" \(\lambda \) for spatial dimer emission:
\[\lambda = d_D(x)/4, \quad d_M(x) = 2d - \sum \mu \ n_B(x \pm \hat{\mu}) \]
with \(d_M(x) \) the number of mesonic neighbors
Two-point Correlators

- Sample *monomer-monomer two-point correlation functions*

\[C(t_H - t_T, \vec{x}_H - \vec{x}_T) = C(\tau, \vec{x}) \]

- accumulate observables during **worm evolution** (tail absorption/source, head emission/sink)

\[C(\tau, \vec{x}) = N_c \frac{O(C(\tau, \vec{x}))}{\text{#worm updates}} \]

- Measure Chiral Susceptibility \(\chi_\sigma \) by summing over worm estimators:

\[\chi_\sigma = \frac{1}{V} \sum_{\vec{x}} C(\tau, \vec{x}) \]

Discrete Time:

\[O(C(\tau, \vec{x})) \rightarrow O(C(\tau, \vec{x})) + f(\gamma) \cdot \delta_{x_T, x_1} \delta_{x_H, x_2}, \quad \tau \in [0, \ldots N_\tau] \]

Continuous Time:

\[O(C(\tau, \vec{x})) \rightarrow O(C(\tau, \vec{x})) + g(T) \cdot \delta_{x_T, x_1} \delta_{x_H, x_2}, \quad \tau \in [0, \ldots \frac{1}{T}] \]
Extracting Meson Masses

- Extract *pole masses* for temporal correlators with *zero spatial momentum*

\[E_0(\vec{p} = 0) = m_0, \quad C(\tau) = \sum_{\vec{x}} \langle \bar{\chi}_{0} \chi_{0} \bar{\chi}_{\vec{x}}, t \chi_{\vec{x}}, t \rangle g_{\vec{x}}^{D} \]

- For staggered fermions: Restrict to diagonal of Dirac-taste-kernel \((N_f = 1)\)

<table>
<thead>
<tr>
<th>(g_{\vec{x}}^{D})</th>
<th>(\Gamma^{D} \otimes \Gamma^{F})</th>
<th>(J^{PC})</th>
<th>Physical states</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(1 \otimes 1)</td>
<td>(\gamma_0 \gamma_5 \otimes (\gamma_0 \gamma_5)^*)</td>
<td>(0^{++})</td>
</tr>
<tr>
<td>((-1)^{x_i})</td>
<td>(\gamma_i \gamma_5 \otimes (\gamma_i \gamma_5)^*)</td>
<td>(\gamma_i \gamma_0 \otimes (\gamma_i \gamma_0)^*)</td>
<td>(1^{++})</td>
</tr>
<tr>
<td>((-1)^{x_j+x_k})</td>
<td>(\gamma_j \gamma_k \otimes (\gamma_j \gamma_k)^*)</td>
<td>(\gamma_i \otimes \gamma_i^*)</td>
<td>(1^{+-})</td>
</tr>
<tr>
<td>((-1)^{x_i+x_j+x_k})</td>
<td>(\gamma_0 \otimes \gamma_0^*)</td>
<td>(\gamma_5 \otimes (\gamma_5)^*)</td>
<td>(1^{--})</td>
</tr>
</tbody>
</table>

\(0^{+-}\) | \(b_T\) |
\(0^{-+}\) | \(\rho V\) |
\(-\nu\) | \(\pi_{PS}\)

channel of primary interest

[Altmeyer et al., 1993]
Temporal Correlators in Continuous Time

- Introduce *binning*
- Evaluate at same spatial site ⇒ Zero momentum projection
- Accumulate *histograms* while worm head propagates

\[\text{Value per bin: } \frac{g(T)}{\# \text{bins}} \]

- Distinguish histograms for *even* and *odd* interval contributions

Extract *pole masses* from temporal correlators + Study various *channels*

In CT: Masses measured in units of \(\frac{M}{T} \)
Discrete and Continuous Time Correlator Fits

Discrete time: \textit{4 parameter} fit

Either combined:

\[C(\tau) = a_{NO} \cosh(m_{NO}(\tau - N_{\tau}/2)) - a_{O} \cos(\pi\tau) \cosh(m_{O}(\tau - N_{\tau}/2)) \]

Or split up for Even and Odd histograms:

\[C_{DT,\text{Even}}(\tau) = a_{NO} \cosh(m_{NO}(\tau - N_{\tau}/2)) - a_{O} \cosh(m_{O}(\tau - N_{\tau}/2)) \]
\[C_{DT,\text{Odd}}(\tau) = a_{NO} \cosh(m_{NO}(\tau - N_{\tau}/2)) + a_{O} \cosh(m_{O}(\tau - N_{\tau}/2)) \]

\[\Rightarrow C_{DT,NO}(\tau) = \frac{1}{2} \left(C_{DT,\text{Even}}(\tau) + C_{DT,\text{Odd}}(\tau) \right), \quad C_{DT,O}(\tau) = \frac{1}{2} \left(C_{DT,\text{Even}}(\tau) - C_{DT,\text{Odd}}(\tau) \right) \]
Discrete and Continuous Time Correlator Fits

Discrete time: 4 parameter fit

Either combined:

\[C(\tau) = a_{NO} \cosh(m_{NO}(\tau - N\tau/2)) - a_O \cos(\pi\tau) \cosh(m_O(\tau - N\tau/2)) \]

Or split up for Even and Odd histograms:

\[C_{DT,Even}(\tau) = a_{NO} \cosh(m_{NO}(\tau - N\tau/2)) - a_O \cosh(m_O(\tau - N\tau/2)) \]
\[C_{DT,Odd}(\tau) = a_{NO} \cosh(m_{NO}(\tau - N\tau/2)) + a_O \cosh(m_O(\tau - N\tau/2)) \]

Non-oscillating Correlator Oscillating Correlator

\[\Rightarrow C_{DT,NO}(\tau) = \frac{1}{2} (C_{DT,Even}(\tau) + C_{DT,Odd}(\tau)), \quad C_{DT,O}(\tau) = \frac{1}{2} (C_{DT,Even}(\tau) - C_{DT,Odd}(\tau)) \]

Continuous time: 2/4 parameter fit of added and subtracted histograms respectively

\[C_{CT,NO}(\tau) = a_{NO} \cosh(m_{NO}(\tau - 1/2)) = \frac{1}{2} (C_{Odd}(\tau) + C_{Even}(\tau)) \]
\[C_{CT,O}(\tau) = a_O \cosh(m_O(\tau - 1/2)) = \frac{1}{2} (C_{Odd}(\tau) - C_{Even}(\tau)) \]
From discrete Histograms to Correlators and Masses

Marc Klegrewe
Temporal Correlators in the Continuous Time Limit of Strong Coupling Lattice QCD
Change \(a_\tau M \rightarrow M/T \) in order to compare with Continuous Time results.
From discrete Histograms to Correlators and Masses
From discrete Histograms to Correlators and Masses

Temporal Correlators in the Continuous Time Limit of Strong Coupling Lattice QCD
Continuous Time Correlators

\begin{align*}
\pi_{PS} & \quad T=0.500 \\
& \quad T=1.000 \\
& \quad T=1.500 \\
& \quad T=2.000 \\
\rho_{V} & \quad T=0.500 \\
& \quad T=1.000 \\
& \quad T=1.500 \\
& \quad T=2.000 \\
\end{align*}
Four Parameter Fit

Marc Klegrewe

Temporal Correlators in the Continuous Time Limit of Strong Coupling Lattice QCD
Behaviour around chiral transition

\[\frac{\sigma_s}{\pi_{PS}} \]

\[\frac{\rho_{V(\gamma_1)}}{b_{T(\gamma_1 \gamma_3)}} \]

\[\text{Marc Klegrewa} \]

Temporal Correlators in the Continuous Time Limit of Strong Coupling Lattice QCD

13 / 14
Behaviour around chiral transition

\[\frac{\sigma_S}{\pi_{PS}} \]

\[\frac{\rho_V(\gamma_1)}{b_T(\gamma_1 \gamma_3)} \]
Summary and Outlook

- Measured monomer-monomer two-point functions \rightarrow constructed temporal correlators
- On our way to extract and compare pole masses for discrete and continuous time
- Consider excited states, especially for low temperatures \Rightarrow Mass extraction and analysis not yet fully completed

- Obtain diffusion constant from zero momentum meson correlators
\Rightarrow Extract spectral function from correlation data

$$C(\tau, T) = \int_{0}^{\infty} d\omega K(\omega, \tau)\sigma(\omega, T) = \int_{0}^{\infty} d\omega \frac{\cosh(\tau(\omega - \frac{1}{2T}))}{\sinh(\frac{\omega}{2T})}\sigma(\omega, T)$$

Typical bottleneck: #data points in temporal direction \rightarrow advantage of large binning
- Reconstruct spectral function by standard methods like MEM
- $\omega \rightarrow 0$ extrapolation

- Non-zero mass
- $N_f = 2$
- β corrections