Chiral transition using the Banks-Casher relation

Gergely Endrődi, Lukas Gonglach

Goethe University of Frankfurt

Lattice ’18, 26. July 2018
nature of chiral transition as function of m_{ud} and m_s
Columbia plot

- nature of chiral transition as function of m_{ud} and m_s
- crossover at physical point

[Aoki et al ’06, Bhattacharya et al ’14]
- nature of chiral transition as function of m_{ud} and m_s
- crossover at physical point
 [Aoki et al '06, Bhattacharya et al '14]
- 1st order region around origin?
 [Pisarski, Wilczek '84]
Columbia plot

- nature of chiral transition as function of m_{ud} and m_s
- crossover at physical point
 [Aoki et al '06, Bhattacharya et al '14]
- 1st order region around origin?
 [Pisarski, Wilczek '84]
- relevant for: $U(1)_A$ symmetry, critical endpoint at $\mu_B > 0$
nature of chiral transition as function of m_{ud} and m_s

crossover at physical point
[Aoki et al '06, Bhattacharya et al '14]

1st order region around origin?
[Pisarski, Wilczek '84]

relevant for: $\text{U}(1)_{A}$ symmetry, critical endpoint at $\mu_B > 0$

$m \rightarrow 0$ limit controversial
Columbia plot

- nature of chiral transition as function of m_{ud} and m_s
- crossover at physical point
 [Aoki et al '06, Bhattacharya et al '14]
- 1st order region around origin?
 [Pisarski, Wilczek '84]
- relevant for: $U(1)_A$ symmetry, critical endpoint at $\mu_B > 0$
- $m \to 0$ limit controversial
- here: learn about the chiral limit using a novel technique
Outline

- problems of the chiral limit
- new approach
 - Banks-Casher relation
 - determination of the spectral density
 - chiral extrapolations
- results
- conclusions
Towards the chiral limit

- with unimproved actions: critical point with huge lattice artefacts [de Forcrand, D’Elia ’17]

- with improved actions: no critical point only strengthening

[Endrӧdi et al ’07] [Ding et al ’18]
Strategy

- attempt an extrapolation to the chiral limit directly

\[\langle \bar{\psi} \psi(m) \rangle_m = \frac{1}{Z_m} \int \mathcal{D}U \ e^{-S_g} \ \det[\hat{\mathcal{D}} + m] \ \text{tr}[(\hat{\mathcal{D}} + m)^{-1}] \]

- \(m \to 0 \) using Banks-Casher relation [Banks, Casher '80]
- \(m \to 0 \) using leading-order reweighting
Banks-Casher relation

- In the eigenbasis of \mathcal{D}, the condensate $\bar{\psi}\psi \propto \text{tr}(\mathcal{D} + m)^{-1}$

$$\bar{\psi}\psi(m) = \frac{T}{V} \sum_{i} \frac{m}{\lambda_{i}^{2} + m^{2}} \xrightarrow{V \to \infty} \int_{-\infty}^{\infty} d\lambda \rho(\lambda) \frac{m}{\lambda^{2} + m^{2}} \xrightarrow{m \to 0} \pi \rho(0)$$

- The eigenvalues contain much more information than just $\bar{\psi}\psi(m)$, they encode also its dependence on m
Leading-order reweighting

- reweight configurations towards \(m = 0 \)

\[
\langle \rho(\lambda) \rangle_0 = \frac{\langle \rho(\lambda) W(m) \rangle_m}{\langle W(m) \rangle_m}
\]

with

\[
W(m) = \frac{\det[\mathcal{D}]}{\det[\mathcal{D} + m]} = \exp \left[-\frac{V}{T} m \cdot \bar{\psi} \psi(m) + \mathcal{O}(m^4) \right]
\]

- work with the so reweighted spectral density in the following
Spectral density

- find $\rho(0)$ via extrapolation of integrated spectral density

$$N(\lambda) = \int_0^\lambda d\lambda' \rho(\lambda')$$

$$\rho(0) = \lim_{\lambda \to 0} \frac{N(\lambda)}{\lambda}$$

- build histogram of intersects to define mean and systematic error of fit
Extrapolations

- remaining m_{ud}-dependence much smaller than in the full condensate $\langle \bar{\psi} \psi(m) \rangle_m$
Chiral transition

- sharpening of the order parameter as V grows
 \sim real phase transition?

- chiral transition temperature at crossing point of two volumes:
 $T_c^{N_f=2+1} \approx 140$ MeV
Chiral transition

- Sharpening of the order parameter as V grows leads to a real phase transition?

- Chiral transition temperature at crossing point of two volumes: $T_c^{N_f=2+1} \approx 140$ MeV

- The same signal is hidden in the full condensate
Chiral transition

- Sharpening of the order parameter as V grows \Rightarrow real phase transition?

- Chiral transition temperature at crossing point of two volumes: $T_{c}^{N_f=2+1} \approx 140$ MeV

- The same signal is hidden in the full condensate

- For $\langle \bar{\psi}\psi(m = 0) \rangle$, no additive renormalization necessary
Number of massless flavors

- same analysis along $m_s/m_{ud} = \text{const. line}$

![Graph showing $\langle \bar{\psi} \psi \rangle$ versus T (MeV) for different lattice sizes $16^3 \times 6$ and $24^3 \times 6$. The $m_{ud} \rightarrow 0$ limit is indicated, as well as $m_s = m_s^{ph}$]
Number of massless flavors

- same analysis along $m_s/m_{ud} = \text{const. line}$

![Graphs showing the variation of $\langle \bar{\psi} \psi \rangle$ with temperature for different lattice sizes and mass ratios.](graphs.png)
Number of massless flavors

- same analysis along $m_s/m_{ud} = \text{const.}$ line

- vacuum condensate reduced consistent with χPT [Moussalam '99, Descotes et al '99]
Number of massless flavors

- same analysis along $m_s/m_{ud} = \text{const. line}$

- vacuum condensate reduced consistent with χPT [Moussalam '99, Descotes et al '99]

- volume-dependence more pronounced \sim stronger transition?
Number of massless flavors

- same analysis along $m_s/m_{ud} = \text{const. line}$

- vacuum condensate reduced consistent with χPT [Moussalam ’99, Descotes et al ’99]

- volume-dependence more pronounced \rightsquigarrow stronger transition?

- chiral transition is reduced to $T_{c}^{N_f=3} \approx 125 \: \text{MeV}$
Nature of the transition

- fit for slope of order parameter

![Graph showing critical scaling](image)

- critical scaling: $\bar{\psi}\psi'_{T=T_c} \overset{V \to \infty}{\longrightarrow} \infty$
Nature of the transition

- fit for slope of order parameter

- critical scaling: $\bar{\psi}\psi'_{T=T_c} \xrightarrow{V \to \infty} \infty$
Nature of the transition

▶ fit for slope of order parameter

\[\overline{\psi}\psi \propto T^{-\frac{11}{12}} \]

▶ critical scaling: \(\overline{\psi}\psi \bigg|_{T=T_c} \xrightarrow{V \to \infty} \infty \)
Nature of the transition

- fit for slope of order parameter

- critical scaling: $\bar{\psi}\psi'_{T=T_c} \xrightarrow{V \to \infty} \infty$
Nature of the transition

- fit for slope of order parameter

\[\bar{\psi}\psi \rightarrow T = T_c \quad V \rightarrow \infty \quad \infty \]

- critical scaling: \(\bar{\psi}\psi \rightarrow T = T_c \quad V \rightarrow \infty \quad \infty \)
Nature of the transition

- fit for slope of order parameter

\[\bar{\psi} \psi \rightarrow \sqrt{\nu} \rightarrow \infty \]

- critical scaling: \(\bar{\psi} \psi'_{T=T_c} \rightarrow \infty \)
Summary

▶ extract chiral condensate via Banks-Casher relation
 \(\sim \) flat extrapolation

▶ finite volume analysis of chiral condensate
 (no additive renormalization required)

▶ \(N_F = 2 + 1 \) chiral limit
 consistent with \(O(4) \) scenario