Thermodynamics for SU(2) pure gauge theory using gradient flow

Takehiro Hirakida, Etsuko Itou1,2, Hiroaki Kouno3

Kyushu U., RCNP1, Kochi U.2, Saga U.3

LATTICE2018@MSU, July 22-28, 2018

arXiv:1805.07106 [hep-lat]
QCD in intermediate temperature

- Experimental data
 → small shear viscosity-to-thermal entropy ratio \((\eta/s)\)
 → perfect-liquid property rather than gas
- Large-\(N_c\) analysis based on AdS/CFT
 → lower bound for shear viscosity
- Lattice calculation
 - Shear viscosity \(\eta\)
 First step: Calculate correlation function of EMT
 - Bad signal-to-noise ratio
 (eg. 6-million Conf. needed in SU(3))
 - Definition of the correctly renormalization of EMT
 - Solving inverse-problem to obtain spectral function
 - Thermal entropy \(s\)
 Method: Integral method\(^1\), Gradient flow method\(^2\) etc.

\(^2\) H. Suzuki, PTEP 2013, 083B03 (2013)
SU(2) pure gauge theory

- Focus on **SU(2) pure gauge theory**
 - Numerical cost is lower than SU(3) gauge theory
 - Provide larger signal of correction term of $1/N_c$
- Difference from **SU($N_c \geq 3$) gauge theory**

Graph

- Our result
- SU(2) (EPJ C77 (2017) 821)
- SU(3)
- SU(4)
- SU(5) (PRL 103, 232001 (2009))
- SU(6)
- SU(8)
In this study

Thermodynamics for pure SU(2) using Gradient flow

1. Scale setting using t_0 reference scale
to determine relation between β and lattice spacing

2. Measure thermodynamics quantities
 \[
 \left(\frac{s}{T^3}, \frac{\Delta}{T^4}, \frac{\varepsilon}{T^4}, \frac{P}{T^4} \right)
 \]
Gradient flow

- Yang-Mills gradient flow equation on lattice\(^3\)
 \[
 \partial_t V_t(x, \mu) - g_0^2 \left\{ \partial_{x, \mu} S_W \right\} V_t(x, \mu) = 0
 \]
 \[V_t(x, \mu) \bigg|_{t=0} = U(x, \mu)\]

 \(g_0\): bare coupling, \(t\): flow time, \(U(\mu, x)\): link variable, \(S_W\): Wilson-plaquette action.

- Renormalized EMT with gradient flow\(^4\)
 \[
 T^R_{\mu\nu} = \lim_{t \to 0} \left[\frac{U_{\mu\nu}}{\alpha_U} + \frac{\delta_{\mu\nu}}{4\alpha_E} \left\{ E - \langle E \rangle_0 \right\} \right]
 \]
 \[U_{\mu\nu} = G_{\mu\rho} G_{\nu\rho} - \frac{\delta_{\mu\nu}}{4} G_{\rho\sigma} G_{\rho\sigma}, \quad E = \frac{1}{4} G_{\mu\nu} G_{\mu\nu}\]

 \(G_{\mu\nu}\): field strength consisting of \(V_t\)
 \(\alpha_U, \alpha_E\): calculated in 1-loop order of running coupling

\(^3\)M. Luscher, JHEP 1008 (2010) 071.
\(^4\)H. Suzuki, PTEP 2013, 083B03 (2013).
Scale Setting

- Observable: \(t^2 \langle E \rangle \propto N_c^2 - 1 \)
- Reference scale: \(t^2 \langle E(t) \rangle \bigg|_{t=t_0} = 0.1 \)
 \(\rightarrow \) a natural scaling-down of the SU(3) case\(^5\)
- Configuration generation
 - Wilson-plaquette action, \(N_s = N_t = 32 \)
 - 1 sweep = 1 pseudo-heatbath + 20 over-relaxation
 - 100 sweep separation between measurements

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>2.42</th>
<th>2.50</th>
<th>2.60</th>
<th>2.70</th>
<th>2.80</th>
<th>2.85</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Conf.</td>
<td>100</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>600</td>
</tr>
</tbody>
</table>

- Gradient flow
 - \(t/a^2 \in [0.00, 32.00] \), \(\Delta t/a^2 = 0.01 \)

Scale Setting

- Best fit function \(\frac{t_0}{a^2} \text{ vs. } \beta \): \(\beta \in [2.42, 2.85] \)
 \[
 \ln\left(\frac{t_0}{a^2}\right) = 1.258 + 6.409(\beta - 2.600) \\
 - 0.7411(\beta - 2.600)^2
 \]

- Compare with scale setting using string tension\(^6\)

Compare with “r_0 scale7 (r_c scale8)”

\[
\frac{\sqrt{8t_0}}{r_0} = 0.6020(86)(40), \quad \frac{\sqrt{8t_0}}{r_c} = 1.126(7)(7),
\]

\[
\sqrt{8t_0} = 0.3010(43)(20)[\text{fm}].
\]

$r_0 = 0.5[\text{fm}], \quad r_c = 0.26[\text{fm}].$

Thermodynamics: \(T/T_c \) and Observables

- \(\beta \) vs. \(T/T_c \) for each \(N_t \)

<table>
<thead>
<tr>
<th>(T/T_c)</th>
<th>(N_T = 6)</th>
<th>(N_T = 8)</th>
<th>(N_T = 10)</th>
<th>(N_T = 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95</td>
<td>—</td>
<td>2.50</td>
<td>2.57</td>
<td>2.62</td>
</tr>
<tr>
<td>0.98</td>
<td>2.42</td>
<td>2.51</td>
<td>2.58</td>
<td>2.63</td>
</tr>
<tr>
<td>1.01</td>
<td>2.43</td>
<td>2.52</td>
<td>2.59</td>
<td>2.64</td>
</tr>
<tr>
<td>1.04</td>
<td>2.44</td>
<td>2.53</td>
<td>2.60</td>
<td>2.65</td>
</tr>
<tr>
<td>1.08</td>
<td>2.45</td>
<td>2.54</td>
<td>2.61</td>
<td>2.66</td>
</tr>
<tr>
<td>1.12</td>
<td>2.46</td>
<td>2.55</td>
<td>2.62</td>
<td>2.66</td>
</tr>
<tr>
<td>1.28</td>
<td>2.50</td>
<td>2.59</td>
<td>2.66</td>
<td>2.72</td>
</tr>
<tr>
<td>1.50</td>
<td>2.55</td>
<td>2.64</td>
<td>2.71</td>
<td>2.77</td>
</tr>
<tr>
<td>1.76</td>
<td>2.60</td>
<td>2.69</td>
<td>2.76</td>
<td>2.82</td>
</tr>
<tr>
<td>2.07</td>
<td>2.65</td>
<td>2.74</td>
<td>2.81</td>
<td>—</td>
</tr>
</tbody>
</table>

- Observables: entropy density \((s) \), trace anomaly \((\Delta) \), energy density \((\varepsilon) \), pressure \((P) \)

\[sT = \varepsilon + P = T_{11}^{R} - T_{44}^{R}, \quad \Delta = \varepsilon - 3P = -\sum_{\mu=1}^{4} T_{\mu\mu}^{R} \]

\[\text{the critical } \beta \text{ on } N_t = 6 \text{ from [J. Engels, J. Fingberg and D. E. Miller, Nucl. Phys. B 387 (1992) 501.]} \]
Procedure and Simulation setup

- Steps to calculate renormalized EMT\(^{10}\)
 1. Generate configuration at \(t = 0 \) on \(N_s^3 \times N_T \)
 2. Solve gradient flow eq. in \(a \ll \sqrt{8t} \ll R \)
 3. Construct renormalized EMT at each \(t \)
 4. Carry out an extrapolation, first \(a \to 0 \), next \(t \to 0 \)

- Simulation setup
 - Wilson-plaquette action
 - \(N_s/N_T = 4, \ N_T = 6, 8, 10, 12 \)
 - # of Conf. for each parameter: 200
 - 1 sweep = 1 pseudo-heatbath+\(N_t \) over-relaxation
 - 100 sweep separation between measurements

- Gradient flow
 - \(t/a^2 \in [0.00, 5.00] \), \(\Delta t/a^2 = 0.01 \)

\(^{10}\)M. Asakawa et al., Phys. Rev. D 90, no. 1, 011501 (2014)
Flow-time dependence of s/T^3 and Δ/T^4

- left: N_t-dep. @ $T/T_c = 1.12$, right: T-dep. @ $N_T = 12$
- Fiducial window: $1/N_t \leq \sqrt{8tT} \leq 0.5$
- $(a, t) \rightarrow (0, 0)$ limit: constant- & linear-extrapolation
Result

- **Left panel:** s/ T^4 (black symbol), Δ/ T^4 (red symbol)
 - $(a, t) \rightarrow (0, 0)$ sys. error of extrapolation (linear & constant) consistent in $T/T_c \geq 1.12$

- **Right panel:** ε/ T^4.vs. P/ T^4 (EOS) in $T > T_c$
 - Toward to SB limit ($\varepsilon/ T^4, P/ T^4 = (\pi^2/5, \pi^2/15)$)
 - $70 \sim 80\%$ of SB limit for $T \sim 2T_c$
 - NOT describe two-color QGP around $T \leq 2T_c$
Compare with HTL analysis

- Hard-Thermal-Loop (HTL) analysis11

 ... 2-color case in NNLO

- Left panel: $\varepsilon/\varepsilon_{SB}$

 Our result is consistent with HTL in $T > T_c$

- Right panel: $(T/T_c)^2 \Delta/T^4$

 plateau and approaches to HTL result in $1.2 T_c \leq T$

11J. O. Andersen \textit{et al.}, JHEP \textbf{1008} (2010) 113.
Summary

We investigate the thermodynamics of SU(2) pure gauge theory

1. Scale setting
 - \(t^2 \langle E(t) \rangle \bigg|_{t=t_0} = 0.1 \) for SU(2)
 - our scale-setting function is more precisely and cover wider \(\beta \) region

2. Obtaining \(s/T^3, \Delta/T^4, \text{EOS} \)
 - Confirm that the traceanomaly in the SU(2) pure gauge theory has a different scaling property from the \(N_c \geq 3 \) cases
 - Our results are more precisely than integral method
 - Consistent with integral method and HTL analysis in high temperature region
Thermodynamics for SU(2) pure gauge theory using gradient flow

T.H., E.Itou, H.Kouno
Compare $t^2 \langle E \rangle$ with perturbative analysis

Compare with NLO result\(^{12}\)

\(^{12}\)R. V. Harlander and T. Neumann, JHEP 1606 (2016) 161
Compare $t^2 \langle E \rangle$ with perturbative analysis

Compare with NNLO result13

\begin{figure}
\centering
\includegraphics[width=\textwidth]{thermodynamics.png}
\caption{NNLO, $\beta=2.85$}
\end{figure}

13R. V. Harlander and T. Neumann, JHEP \textbf{1606} (2016) 161
Scale Setting

- **Best fit function** \(t_0/a^2 \) vs. \(\beta \)

\[
\ln(t_0/a^2) = 1.258 + 6.409(\beta - 2.600) - 0.7411(\beta - 2.600)^2.
\]

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>2.42</th>
<th>2.50</th>
<th>2.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_0/a^2)</td>
<td>1.083(2)</td>
<td>1.839(3)</td>
<td>3.522(10)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>2.70</td>
<td>2.80</td>
<td>2.85</td>
</tr>
<tr>
<td>(t_0/a^2)</td>
<td>6.628(36)</td>
<td>11.96(12)</td>
<td>16.95(17)</td>
</tr>
</tbody>
</table>
$a \to 0$ limit

$\frac{8t}{T} \in [0.25, 0.40], \quad \delta(\sqrt{8tT}) = 0.01$

- Each data is adopted closest to the fixed $\sqrt{8tT}$
- Constant extrapolation: to calculate the central value
- Linear extrapolation: to estimate the systematic error with constant extrapolation

Sys. error ... at most $3-\sigma \left(\frac{s}{T^3} \right)$ and $2-\sigma \left(\frac{\Delta}{T^4} \right)$
$t \rightarrow 0$ limit

- $\sqrt{8tT} \in [0.25, 0.40], \, \delta(\sqrt{8tT}) = 0.01$
- Carry out both constant- and linear-extrapolation
- We take the central result which is the better χ^2/d.o.f
- Sys. error ... at most $2-\sigma$ (s/T^3) and $1-\sigma$ (Δ/T^4)
Figure: Result at $\beta = 2.85$, $t/a^2 = 32$

Topological charge Q

$$Q = \frac{1}{32\pi^2} \int d^4 x \, \epsilon_{\mu\nu\rho\sigma} \text{Tr} G_{\mu\nu} G_{\rho\sigma}$$

Q takes an almost integer-value
→ autocorrelation can be negligible in our data sets
Back Up: Renormalized Polyakov loop

- It is believed that universality class of pure SU(2) is same as that of 3-D Ising model
- Renormalization condition\(^{14}\) \(L_R(T = 1.76T_c) = 0.894\)

\[L_R(T) \]

- Critical exponent (0.3265(3) in 3-D Ising model)
 - \(N_T = 10\): 0.159(3)
 - \(N_T = 12\): 0.242(3)
