Exploring the phase diagram of finite density QCD at low temperature by the complex Langevin method

Yuta Ito (KEK)

based on collaboration with
Shoichiro Tsutsui (KEK), Jun Nishimura (KEK, SOKENDAI), Hideo Matsufuru (KEK)
Asato Tsuchiya (Shizuoka University), Shinji Shimasaki (Keio University, KEK)
Introduction

- QCD phase diagram (conjectured)
Introduction

- QCD phase diagram

- Silver-Blaze phenomenon, neutron star, the quark matter phase, color SC

\[
\begin{align*}
T & \quad \text{QGP phase} \\
\text{Hadron phase} & \quad \text{low temperature} \\
\mu & \quad \text{Color Superconductor etc.}
\end{align*}
\]
Introduction

- QCD phase diagram

- QGP phase
- Color Superconductor etc.

- Hadron phase

- difficult to study due to Sign problem

- low temperature

- Silver-Blaze phenomenon, neutron star, the quark matter phase, color SC
Finite density QCD

Partition function

\[Z = \int dU \, \text{det} \, M[U, \mu] e^{-S_g[U]} \]

- \(S_g[U] \) : gauge action
- \(\text{det} \, M[U, \mu] \) : fermion determinant

- When \(\mu \neq 0 \), the fermion determinant becomes complex, which causes the sign problem.

- Complex Langevin method (CLM) is a promising approach to solve the sign problem.
CLM for lattice QCD

- complexify the link variables

\[U_{x\mu} \in SU(3) \rightarrow U_{x\mu} \in SL(3, \mathbb{C}) \]

- consider holomorphic extension of the action

\[S[U] \rightarrow S[U] \]

- update the link variables according to the complex Langevin equation

\[U_{x\mu}(t + \epsilon) = \exp \left[i(\epsilon v_{x\mu}(U) + \sqrt{\epsilon} \eta_{x\mu}(t)) \right] U_{x\mu}(t) \]

\[t : \text{Langevin time} \]
\[\eta_{x\mu} : \text{Gaussian noise} \]
\[v_{x\mu} = -D_{x\mu} S[U] : \text{drift term} \]
Correctness of the results of CLM

The two causes for failure of the CLM.

- excursion problem
 large deviation of $U_{x \mu}$ from SU(3)
- singular drift problem
 appearance of near zero eigenvalues of the Dirac operator

Gauge cooling
[Seiler, Sexty, Stamatescu '13]

Solution

Deformation of the Dirac op.
[YI, Nishimura '16]
Correctness of the results of CLM

The two causes for failure of the CLM.

- excursion problem
 large deviation of $U_{x\mu}$ from SU(3)

- singular drift problem
 appearance of near zero eigenvalues of the Dirac operator

Gauge cooling
[Seiler, Sexty, Stamatescu ’13]

deformation of the Dirac op.
[YI, Nishimura ’16]

In this work, we don’t need to use this technique.
Correctness of the results of CLM

The two causes for failure of the CLM.

- excursion problem
 large deviation of $\mathcal{U}_{x\mu}$ from SU(3)

- singular drift problem
 appearance of near zero eigenvalues of the Dirac operator

To judge whether the CLM works or not, we consider

- probability distribution of the magnitude of drift term $v_{x\mu} = -\mathcal{D}_{x\mu}S[\mathcal{U}]$

\[
p(u) = \frac{1}{4NV} \left\langle \sum_{x\mu} \delta(u - u_{x\mu}) \right\rangle
\]

\[
u_{x\mu} \equiv \sqrt{\frac{1}{N_c^2 - 1} \text{tr}(v_{x\mu}v_{x\mu}^\dagger)}
\]

- asymptotic behavior of $p(u)$ at large u
 - exponential fall-off \rightarrow reliable results.
 - power law fall-off \rightarrow unreliable results.

Gauge cooling
[Seiler, Sexty, Stamatescu ’13]

deformation of the Dirac op.
[YI, Nishimura ’16]

In this work, we don’t need to use this technique.

In this work, we don’t need to use this technique.
Setup

Lattice setup:
- Lattice size: $8^3 \times 16$
- Staggered fermion with $N_f = 4$
- $\beta = 5.7$
- Quark mass: $m_q a = 0.01, 0.05$
- Chemical potential: $\mu a = 0.1, \ldots, 0.5$

Setup for CLM:
- Langevin step size: $\epsilon = 10^{-4}$, adaptive step size employed
- Total number of Langevin steps: $5 \times 10^5 \sim 15 \times 10^5$
- Gauge cooling at every Langevin step
The aim of this work

• We measure the baryon number density

\[\langle n \rangle = \frac{1}{N_V N_c} \frac{\partial}{\partial(\mu a)} \log Z \]

• We focus on the **low temperature region**.

Silver-Blaze phenomenon?
transition to nuclear matter/quark matter phase?

cf.) Tsutsui’s talk: analysis at high temperature region

• We compare the results with RHMC results of the phase
quenched model.
Histogram of the drift ($m_q a = 0.05$)

The CLM successfully works even at the intermediate region of μ.

- Power law fall-off: $\mu = 0.3, 0.325$
- Exponential fall-off: $\mu = 0.225, 0.25, 0.275$
- Reliable region: $0.35 \leq \mu \leq 0.47$
Baryon number density ($m_q a = 0.05$)

\[\langle n \rangle \]
Comparison with phase quenced simulation ($m_q a = 0.05$)

Not much difference between CLM and PQ results within the reliable region.
Baryon number density ($m_q a = 0.01$)
Comparison with phase quenched simulation \((m_qa=0.01)\)

\[
\langle n \rangle
\]

\[
\mu
\]
$m_q a = 0.01 \text{ vs } 0.05$

For $\mu \lesssim 0.3$

PQ

- $\langle n \rangle$ starts to grow earlier for $m_q a = 0.01$ than $m_q a = 0.05$.

CLM

- The region of μ in which the CLM works depends on the quark mass.
- Singular drift problem becomes severer for small m_q.
- In the Silver-Blaze region, the CLM is not reliable.
\[m_q a = 0.01 \text{ vs } 0.05 \]

For \(0.3 \lesssim \mu \lesssim 0.45 \)

PQ
- \(\langle n \rangle \) is sensitive to quark mass.
- \(\mu \) consistent with the formation of pion condensate.

CLM
- Not sensitive to quark mass.
- Nucleon condensate (not pion)
- The plateau region w.r.t. \(\mu \) is observed.
- The finite box is already filled with nucleons.
$m_qa=0.01$ vs 0.05

For $\mu \gtrsim 0.45$

CLM

- Singular drift problem occurs at large μ.
- $\langle n \rangle$ starts to grow again within the reliable region.

To confirm this, we need to simulate with larger volume.
Summary

• Using the CLM, we have explored finite density QCD at low temperature with $N_f = 4$ staggered fermions.

• Even at the intermediate region of μ, the CLM works without the singular drift problem, where $\langle n \rangle$ has a plateau region suggesting nuclear matter phase.

• $\langle n \rangle$ starts to grow rapidly at the end of the plateau region, which may be a trend toward some transition.
Future work

• measure the pion mass and the nucleon mass at the simulated parameter points, to understand better the critical behavior w.r.t. μ.

• Understand how the singular drift problem is avoided in the nuclear matter phase by measuring the eigenvalue distribution of the Dirac operator.

• Perform simulations with $N_f = 2$ Wilson fermions. (The CL simulation with $N_f = 2$ staggered fermions is problematic even at small μ due to the large unitarity norm. [Kogut, Sinclair ’17] We have also confirmed this.)
Histogram of the drift ($m_q a = 0.01$)

$\rho(u) * d\tau_{ad}$

$\mu \leq 0.25$

$\mu = 0.10$
$\mu = 0.15$
$\mu = 0.20$
$\mu = 0.25$

Reliable
$\mu = 0.1$

Unreliable
$\mu = 0.15-0.25$

power law fall-off

exponential fall-off
Histogram of the drift ($m_q a = 0.01$)

- $\mu \geq 0.3$
- Reliable: $\mu = 0.325 - 0.45$
- Unreliable: $\mu = 0.3, 0.5$

- Power law fall-off
- Exponential fall-off

<table>
<thead>
<tr>
<th>μ</th>
<th>0.3</th>
<th>0.325</th>
<th>0.35</th>
<th>0.375</th>
<th>0.4</th>
<th>0.425</th>
<th>0.45</th>
<th>0.475</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\text{drift}</td>
<td>$</td>
<td>10^{-10}</td>
<td>10^{-8}</td>
<td>10^{-6}</td>
<td>10^{-4}</td>
<td>10^{-2}</td>
<td>10^0</td>
<td>10^2</td>
</tr>
</tbody>
</table>