Weak coupling limit of $2 + 1$, $SU(2)$ lattice gauge theory and mass gap

Sreeraj T P

The Institute of Mathematical Sciences.

25 July, 2018
Lattice 2018
Work done with: Ramesh Anishetty
Attempts to describe Yang mills theory in terms of Gauge invariant Wilson loops.
- Non-local.
- Over-complete.

We will describe gauge theory in 'dual' electric loop representation.
- local
- complete.
A quick look at Hamiltonian LGT.
Point split lattice - PSlattice.
Local gauge invariant states.
Path integral in phase space.
Weak coupling limit and mass gap.
Hamiltonian SU(2) Gauge theory on a lattice

(Kogut and Susskind, 1976)

\[E^a_L U(n, i) E^a_R \]

- \(U \sim e^{iA} \) – SU(2) parallel transport operator
- \(E_L \equiv \) lattice analogue of E
- \(E_R \equiv -E_L \) parallel transported by U
- \(E^2_R = E^2_L \) [link constraint]

- \(E_L/E_R \in \text{SU}(2) \) algebra.
• Hamiltonian is:

\[H = \frac{\tilde{g}^2}{2} \sum_{\text{links}} E_a E^a + \frac{1}{2g^2} \sum_{\text{plaq}} [2 - \text{Tr}U_p] \]

Physical states are gauge invariant.

Gauss Law Constraints!
\[\sum_i [E_{L}^a(i) + E_{R}^a(i)] |\psi_{phys}\rangle = 0 \]

• Gauss law operator generates gauge transformations at each site.
• Gauss law says: at each site, incoming electric flux = outgoing electric flux.
Gauge invariant, local Hilbert space

\[E_i^a \in su(2) \text{ algebra} \]

Gauss law:
\[\vec{E}_1 + \vec{E}_1 + \vec{E}_2 + \vec{E}_2 = 0 \]

\[(\vec{E}_1 + \vec{E}_2) + (\vec{E}_1 + \vec{E}_2) = 0 \]
\[(\vec{E}_1 + \vec{E}_2) + (\vec{E}_1 + \vec{E}_2) = 0 \]
\[(\vec{E}_1 + \vec{E}_1) + (\vec{E}_2 + \vec{E}_2) = 0 \]

(Ramesh Anishetty and H. S. Sharatchandra, PRL, 65, 813 (1990))

Sreeraj T P
Weak coupling limit of 2 + 1, SU(2) lattice gauge theory and m
• Split the site into two sites and introduce a new link.
• Introduce Link operator and link constraint at the new link.
• All sites have 3 links and Gauss law constraint at each site.
• Dynamics is much more transparent on the split lattice.

(Ramesh Anishetty and T P Sreeraj, PRD, 97, 074511 (2018))
• PS lattice reduces to the original lattice by a gauge fixing.
PS-lattice

- Lattice after splitting each site:

- plaquette \rightarrow octagon

- 3 possible point splitting schemes at each site \rightarrow large number of unitarily equivalent Hilbert spaces.
Schwinger Bosons.

- $E_L, U, E_R \rightarrow a^\dagger_{\alpha}(L), a^\dagger_{\alpha}(R)$; $a^\dagger_{\alpha}(L/R)$ – Harmonic oscillator doublets!

$$
\begin{align*}
E^a_L &\equiv a^\dagger(L) \frac{\sigma^a}{2} a(L), \\
E^a_R &\equiv a^\dagger(R) \frac{\sigma^a}{2} a(R).
\end{align*}
$$

$$
E^2 = \frac{N}{2} \left(\frac{N}{2} + 1 \right)
$$

$$
U = \frac{1}{\sqrt{\hat{N} + 1}} \left(\begin{array}{cc}
a^\dagger_2(L) & a_1(L) \\
-a^\dagger_1(L) & a_2(L)
\end{array} \right) \left(\begin{array}{cc}
a^\dagger_1(R) & a^\dagger_2(R) \\
a_2(R) & -a_1(R)
\end{array} \right) \frac{1}{\sqrt{\hat{N} + 1}} (\text{prepotential rep})
$$

$$
U = U_L \Lambda_L U_R \Lambda_R^\dagger
$$

- Under gauge transformations:

$$
U \rightarrow \Lambda_L U \Lambda_R^\dagger,
$$

$$
a(L) \rightarrow \Lambda_L a(L), \quad a(R) \rightarrow \Lambda_R a(R)
$$
Gauge invariant basis with Schwinger Bosons

• At a 3-vertex:

\[
\begin{array}{c}
1 \quad \bar{1} \\
\downarrow \quad \downarrow \\
l_{31} \quad l_{13}
\end{array}
\]

\[l_{1\bar{1}}, l_{13}, l_{31}\]

• Normalized gauge invariant states at a 3-vertex:

\[
|l_{1\bar{1}}, l_{13}, l_{31}\rangle = \frac{(a^\dagger[1]\epsilon a^\dagger[\bar{1}])^{l_{1\bar{1}}} (a^\dagger[\bar{1}]\epsilon a^\dagger[3])^{l_{13}} (a^\dagger[3]\epsilon a^\dagger[1])^{l_{31}}}{\sqrt{(l_{1\bar{1}} + l_{31} + l_{13} + 1)!(l_{1\bar{1}})!(l_{31})!(l_{23})!}} |0\rangle \equiv |n_1, n_{\bar{1}}, n_3 = m\rangle
\]

• \(n_1, n_{\bar{1}}, n_3\) gives the number of harmonic oscillators on the link 1, \(\bar{1}\), 3.

\[n_1 = l_{12} + l_{31} \quad n_2 = l_{23} + l_{12} \quad n_3 = m = l_{31} + l_{23}\]

(Ramesh Anishetty and T P Sreeraj, PRD, 97, 074511 (2018))
• Equivalent descriptions based on:
 1. l_{ij} satisfying the link condition:

$$l_{31}[a] + l_{13}[a] = n_3(\equiv m) = l_{32}[b] + l_{23}[b]$$

l_{ij} into a link = l_{ij} going out \implies Closed Electric flux loops.

2. n_i, m -local quantum numbers satisfying triangle inequalities at each site:

$$|n_i - n_i^\dagger| \leq m \leq n_i + n_i^\dagger$$
Action of Hamiltonian on the number basis.

- \(E_i^2 = \frac{\hat{N}_i}{2} \left(\frac{\hat{N}_i}{2} + 1 \right) \) diagonal.
- \(TrU_p = TrU_0 \) changes \(n_i, m \) at each link along a plaquette by \(\pm 1 \).

\[TrU_0 \]

\[\quad \equiv \quad C \]

Sreeraj T P Weak coupling limit of 2 + 1, SU(2) lattice gauge theory and m
Phases

- We define phase operators satisfying:

 \[[\hat{N}_i, e^{i\phi}] = e^{i\phi} \quad [\hat{M}, e^{i\chi}] = e^{i\chi} \]

\[
\text{Tr} U_0 |n_i, n_{\bar{i}}, m\rangle = \text{Tr} \prod_{\text{oct}} \begin{pmatrix} e^{i\chi} & 0 \\ 0 & e^{-i\chi} \end{pmatrix} \begin{pmatrix} D & F \\ F & D \end{pmatrix} \begin{pmatrix} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{pmatrix} |n_i, n_{\bar{i}}, m\rangle
\]

\[
D = \sqrt{\frac{(n_i + n_{\bar{i}} + m + 3)(n_i - n_{\bar{i}} + m + 1)}{4(m + 1)(n_i + 1)}}
\]

\[
F = \sqrt{\frac{(n_{\bar{i}} - n_i + m + 1)(n_{\bar{i}} + n_i - m + 1)}{4(m + 1)(n_i + 1)}}
\]
Path integral in phase space

- Path integral is constructed in phase space by usual time slicing and sandwiching eigenbasis of the number and phase basis.
- Path integral in phase space is:

$$Z = \int D\phi_1 D\phi_2 D\chi \sum_{n_1, n_2, m} e^{-\int dt \left[\sum_s \left[i(n_1 \dot{\phi}_1 + n_2 \dot{\phi}_2 + m \dot{\chi}) + \frac{g^2}{2} \left(n_1^2(s) + n_2^2(s) \right) \right] + \frac{1}{2g^2} \sum_{\text{oct}} \left[2 - Tr \left(\prod_{\text{oct}} P \right) \right] \right]}$$

n_1, n_2, m should satisfy triangle inequality.
Weak coupling analysis

• When \(g \to 0 \), \(\langle n_1 \rangle = \langle n_2 \rangle = N \), \(\langle m \rangle = 2N \), \(N \) large, \(\phi_i, \chi \) small gives

\[
P = \begin{pmatrix} e^{i\hat{\chi}} & e^{-i\hat{\chi}} \\ e^{i\hat{\phi}} & e^{-i\hat{\phi}} \end{pmatrix} \begin{pmatrix} D & F \\ F & D \end{pmatrix} \begin{pmatrix} e^{i\hat{\phi}} & e^{-i\hat{\phi}} \end{pmatrix} \to \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad (1)
\]

\[
D = \sqrt{\frac{(n_i + n_\bar{i} + m + 3)(n_i - n_\bar{i} + m + 1)}{4(m + 1)(n_i + 1)}} \sim 1
\]

\[
F = \sqrt{\frac{(n_\bar{i} - n_i + m + 1)(n_\bar{i} + n_i - m + 1)}{4(m + 1)(n_i + 1)}} \sim \frac{1}{2\sqrt{N}}
\]

attains the minimum of the magnetic term.

• Splitting fields into mean field and fluctuations.

\[
n_i = N + \tilde{n}_i \quad m = 2N + \tilde{m}
\]

\[
D \sim o(1) \quad F \sim o(1/2\sqrt{N}) \quad (2)
\]

• Redefine \(\phi_i, \chi \to g\phi_i, \ g\chi \).
Weak coupling Vacuum

- $\langle n_1 \rangle = \langle n_2 \rangle = N, \langle m \rangle = 2N$
- all electric flux into a site in x direction goes to y direction and vice versa
- \Rightarrow small electric loops.

- Vacuum dominated by small (spatially) electric flux loops containing huge fluxes.

(in the unsplit lattice)

Sreeraj T P Weak coupling limit of $2+1$, $SU(2)$ lattice gauge theory and m
Fluctuations

- Dominant fluctuations:

- Sub dominant fluctuations of order $\frac{1}{N}$:

Each flip gives a factor of $\frac{1}{2\sqrt{N}}$.

Sreeraj T P
Weak coupling limit of 2 + 1, SU(2) lattice gauge theory and m
• We now make an expansion in $\frac{1}{N}$ and g. After a few field redefinitions gives:

$$\left[2 - Tr\left(\prod P\right)\right] \approx \left[\frac{1}{4N^2} \tilde{m}^2 + V(\phi_1, \phi_2, \chi)\right]$$ (3)

$$V(\phi_1, \phi_2, \chi) = \frac{g^2}{2} \left\{ \left[\Delta_1 (\phi_2 - \frac{1}{2} \Delta_2 \chi) - \Delta_2 (\phi_1 + \frac{1}{2} \Delta_1 \chi)\right]^2 + \frac{1}{N} \left[16 \left(\phi_1 + \frac{1}{2} \Delta_1 \chi\right)^2 + (\phi_2 - \frac{1}{2} \Delta_2 \chi)^2 + \chi^2\right] - \left[\Delta_1 (\phi_2 - \frac{1}{2} \Delta_2 \chi) - \Delta_2 (\phi_1 + \frac{1}{2} \Delta_1 \chi) + \Delta_1 \Delta_2 \chi\right]^2 - (\Delta_1 \Delta_2 \chi)^2 \right\}$$

$$= \frac{g^2}{2} \left\{ \left(\Delta_1 \phi_2' - \Delta_2 \phi_1'\right)^2 + \frac{1}{N} \left[16 \left(\phi_1'^2 + \phi_2'^2 + \chi^2\right) - \left(\Delta_1 \phi_2' - \Delta_2 \phi_1' + \Delta_1 \Delta_2 \chi\right)^2 \right] - (\Delta_1 \Delta_2 \chi)^2 \right\}$$ (4)
• Performing the Gaussian summation over $\tilde{n}_1, \tilde{n}_2, \tilde{m}$, and making the transformation:

$$\phi'_i = \frac{1}{\sqrt{-\Delta^2}}(\Delta_i \eta + \epsilon_{ij} \delta_j \psi)$$

Path integral becomes:

$$Z = \int D\psi D\eta D\chi e^{-\int dt \sum_{\text{sites}} \left[\frac{2g^2}{\tilde{g}^2} (\dot{\eta}^2 + \dot{\psi}^2) + 2g^4 N^2 \dot{\chi}^2 + V'(\psi, \eta, \chi) \right] + o(a^4)}$$

$$V'(\psi, \eta, \chi) = \left\{ \frac{1}{4}(\Delta \psi)^2 + \frac{1}{4N} \left[16(\eta^2 + \psi^2 + \chi^2) - (\Delta \psi)^2 \right] \right\}$$

• Casting ψ in canonical form by $\psi \rightarrow \sqrt{2} \psi$ gives:

$$\left(\frac{g}{\tilde{g}} \right)^2 = \frac{a^2}{8}$$

$$\frac{16}{N} = M^2 a^2$$

$$N = \frac{16}{M^2 g^4}$$
Dispersion relations.

- The euclidean inverse propagators in the energy-momentum space to the leading order are

\[\psi : p_0^2 + M^2 + \vec{p}^2 + O(a^2) \]
\[\eta : p_0^2 + M^2 + O(a^4) \]
\[\chi : M^2 + O(a^4); p_0 = 0. \]

- \(\psi \) is a relativistic particle with mass \(M \)
- \(\eta \) may propagate due to higher order corrections.
- \(\chi \) do not fluctuate.
On going work

1. Calculation of string tension.
2. Extending the same methods to higher dimensions.
3. Inclusion of fermions.
4. Extension to SU(3)
Thank You for your Attention.