Gauss’s Law, Duality, and the Hamiltonian Framework of U(1) Lattice Gauge Theory

David B. Kaplan & Jesse R. Stryker

Institute for Nuclear Theory
University of Washington

36th Annual International Symposium on Lattice Field Theory

Work based on arXiv:1806.08797
(submitted to PRL)
Outline

1. Context of project

2. Recap: Conventional Hamiltonian LGT

3. The emergence of duality
 - Original theory set-up
 - Reconstruction begets duality
Roadmap

1. Context of project

2. Recap: Conventional Hamiltonian LGT

3. The emergence of duality
 - Original theory set-up
 - Reconstruction begets duality
Unitary evolution on a quantum computer

Digital quantum computers (QC):

- Unitary gates $\sim e^{-it\hat{H}}$ of some \hat{H}.
- Want to simulate a lattice gauge theory (LGT).
- How to map its \hat{H} and its Hilbert space \mathcal{H} on to QC?
Unitary evolution on a quantum computer

Digital quantum computers (QC):

- Unitary gates $\sim e^{-it\hat{H}}$ of some \hat{H}.
- Want to simulate a lattice gauge theory (LGT).
- How to map its \hat{H} and its Hilbert space \mathcal{H} on to QC?

Near-term QC architectures will have very limited capabilities

- How to most wisely spend those qubits?
Previous work

Arena for these questions is the Hamiltonian formalism of LGT.
Previous work

- Arena for these questions is the Hamiltonian formalism of LGT.
- Hamiltonian LGT [Kogut and Susskind 1975] studies go back as far as Wilson’s Euclidean lattice path integral
 - For modern discussion in context of QC see, e.g., Byrnes and Yamamoto 2006; Wiese 2014; Zohar et al. 2017; P. Dreher’s talk
Previous work

- **Arena for these questions is the Hamiltonian formalism of LGT.**
- Hamiltonian LGT [Kogut and Susskind 1975] studies go back as far as Wilson’s Euclidean lattice path integral
 - For modern discussion in context of QC see, e.g., Byrnes and Yamamoto 2006; Wiese 2014; Zohar et al. 2017; P. Dreher’s talk
- **Taking pure U(1) LGT, we seek **most economical construction**
 - Leads directly to duality transformation
Previous work

- Arena for these questions is the Hamiltonian formalism of LGT.
- Hamiltonian LGT [Kogut and Susskind 1975] studies go back as far as Wilson’s Euclidean lattice path integral
 - For modern discussion in context of QC see, e.g., Byrnes and Yamamoto 2006; Wiese 2014; Zohar et al. 2017; P. Dreher’s talk
- Taking pure U(1) LGT, we seek most economical construction
 - Leads directly to duality transformation
- Dualities also extensively studied in LGTs and many other areas
 - See, e.g., Anishetty and Sharatchandra 1990; Mathur 2006; Anishetty and Sreeraj 2018
Roadmap

1. Context of project

2. Recap: Conventional Hamiltonian LGT

3. The emergence of duality
 - Original theory set-up
 - Reconstruction begets duality

Recap: Conventional Hamiltonian LGT
Conventional construction

Link operators raise or lower electric field:

\[\hat{U} | \psi \rangle = | \phi \rangle \]
Recap: Conventional Hamiltonian LGT

Conventional construction

Link operators raise or lower electric field:

\[\hat{U} | \psi \rangle = | \psi' \rangle \]

Kogut-Susskind Hamiltonian:

\[
H_E = \frac{1}{2a_s} \sum_\ell \tilde{g}_t^2 \hat{E}_\ell^2, \quad H_B = \frac{1}{2a_s} \left[\frac{1}{\tilde{g}_s^2} \sum_p \left(2 - \hat{P}_p - \hat{P}_p^\dagger \right) \right]
\]

\[
H_E + H_B \xrightarrow{a_s \to 0} H = \frac{1}{2} \int d^Dx (E^2 + B^2)
\]
Recap: Conventional Hamiltonian LGT

Issues with standard formulation

1. Must impose **Gauss’s law** on kets [Kogut and Susskind 1975; Zohar et al. 2017]
 - Most directions in \mathcal{H} unphysical.
 - Danger of leaving $\mathcal{H}_{\text{phys}}$ due to errors, noise
 - If truncating states (by e.g. $|\mathcal{E}_\ell| \leq \Lambda$ in $U(1)$), makes awkward constraints around cutoff.
Recap: Conventional Hamiltonian LGT

Issues with standard formulation

1. Must impose **Gauss’s law** on kets [Kogut and Susskind 1975; Zohar et al. 2017]
 - Most directions in \mathcal{H} unphysical.
 - Danger of leaving $\mathcal{H}_{\text{phys}}$ due to errors, noise
 - If truncating states (by e.g. $|\mathcal{E}_\ell| \leq \Lambda$ in $U(1)$), makes awkward constraints around cutoff.

2. Electric fluctuations large at weak coupling
 - Expect large \mathbf{E} fluctuations as $a_s \to 0$ in $D = 2$ gauge theories and in asymptotically-free theories in $D = 3$
 - Rate of convergence as $a_s \to 0$ unclear when truncating on \mathbf{E}
The emergence of duality

Roadmap

1. Context of project
2. Recap: Conventional Hamiltonian LGT
3. The emergence of duality
 - Original theory set-up
 - Reconstruction begets duality
Starting point for original theory

We start with a symmetric Hamiltonian,\(^1\)

\[
\begin{align*}
\hat{H} &= \hat{H}_E + \hat{H}_B, \\
\hat{H}_B &= \frac{1}{2a_s} \left[\frac{1}{\tilde{g}_s^2} \sum_p \left(2 - \hat{P}_p - \hat{P}_p^\dagger \right) \right], \\
\hat{H}_E &= \frac{1}{2a_s} \left[\frac{\tilde{g}_t^2}{\xi^2} \sum_\ell \left(2 - \hat{Q}_\ell - \hat{Q}_\ell^\dagger \right) \right].
\end{align*}
\]

\(\times\) Hilbert space \(\mathcal{H}\) and \(\hat{H}_B\) are conventional

\(^1\)Different, but similar to [Horn, Weinstein, and Yankielowicz 1979].
The emergence of duality

Original theory set-up

Starting point for original theory

We start with a symmetric Hamiltonian,

\[\hat{H} = \hat{H}_E + \hat{H}_B , \]

\[\hat{H}_B = \frac{1}{2a_s} \left[\frac{1}{\tilde{g}_s^2} \sum_p \left(2 - \hat{P}_p - \hat{P}_p^\dagger \right) \right] , \]

\[\hat{H}_E = \frac{1}{2a_s} \left[\frac{\tilde{g}_t^2}{\xi^2} \sum_\ell \left(2 - \hat{Q}_\ell - \hat{Q}_\ell^\dagger \right) \right] . \]

\[\text{Hilbert space } \mathcal{H} \text{ and } \hat{H}_B \text{ are conventional} \]

\[\text{We exponentiated } E: \]

\[\hat{Q}_\ell \equiv e^{i\xi \hat{E}_\ell} . \]

Think of \(\xi \ll 1 \) as \(a_t/a_s \).

\[^1 \text{Different, but similar to [Horn, Weinstein, and Yankielowicz 1979].} \]
The emergence of duality

Reconstruction begets duality

Hilbert space generation

A basis for $\mathcal{H}_{\text{phys}}$ is generated by acting with plaquettes on trivial state.

$$|\Omega\rangle \equiv \bigotimes_{\ell} |0\rangle_{\ell} ,$$

$$|\mathcal{A}_L\rangle \equiv \prod_{p} \left(\hat{P}_p \right)^{\mathcal{A}_p} |\Omega\rangle .$$
Hilbert space generation

A basis for $\mathcal{H}_{\text{phys}}$ is generated by acting with plaquettes on trivial state.

$$\left| \Omega \right\rangle \equiv \bigotimes_{\ell} \left| 0 \right\rangle_{\ell},$$

$$\left| \mathcal{A}_L \right\rangle \equiv \prod_{p} \left(\hat{P}_p \right)^{\mathcal{A}_p} \left| \Omega \right\rangle .$$

$D = 2$ for this talk.
Take A’s further: Use as *quantum numbers*.

Notice:

- Plaquettes $\mathbf{p} \sim$ dual sites \mathbf{n}^*.
 $\Rightarrow \mathcal{A}_\mathbf{p}$ is scalar field $\mathcal{A}_{\mathbf{n}^*}$ on L^*.

- E_ℓ on a link \sim difference $\Delta \mathcal{A}_{\mathbf{n}^*}$ along a dual link.
The emergence of duality

Reconstruction begets duality

Hilbert space transcription

Take \mathcal{A}’s further: Use as *quantum numbers*

Notice:

$\blacktriangleright \blacktriangleleft$ Plaquettes $p \sim$ dual sites n^*.
$\Rightarrow \mathcal{A}_p$ is scalar field \mathcal{A}_{n^*} on L^*.

$\blacktriangleright \blacktriangleleft E_\ell$ on a link \sim difference $\Delta \mathcal{A}_{n^*}$ along a dual link

1.) Identify

$$
\prod_p \left(\hat{P}_p \right)^{\mathcal{A}_p} \left| \Omega \right> \longleftrightarrow \bigotimes_{n^*} \left| \mathcal{A}_{n^*} \right>
$$
2. Define identical local orthonormal bases, \(\{ |\mathcal{A}_n^* \rangle \} \), which diagonalize

\[
\hat{U}_n^* \equiv \sum_{\mathcal{A}_n^* = -\infty}^{\infty} |\mathcal{A}_n^* \rangle e^{i \xi \mathcal{A}_n^*} \langle \mathcal{A}_n^* | .
\]

3. Global basis states:

\[|\mathcal{A}_L^* \rangle \equiv \bigotimes n^* |\mathcal{A}_n^* \rangle \]

4. (Local) raising operators:

\[
\hat{Q}_n^* \equiv \sum_{\mathcal{A}_n^* = -\infty}^{\infty} |\mathcal{A}_n^* + 1 \rangle \langle \mathcal{A}_n^* | .
\]
2. Define identical local orthonormal bases, \(\{ |\mathcal{A}_{n^*}\rangle \} \), which diagonalize

\[
\hat{U}_{n^*} \equiv \sum_{n^* = -\infty}^{\infty} |\mathcal{A}_{n^*}\rangle e^{i \xi \mathcal{A}_{n^*}} \langle \mathcal{A}_{n^*}| .
\]

3. Global basis states:

\[
|\mathcal{A}_{L^*}\rangle \equiv \bigotimes_{n^*} |\mathcal{A}_{n^*}\rangle
\]

4. (Local) raising operators:

\[
\hat{V}_{n^*} \equiv \sum_{n^* = -\infty}^{\infty} |\mathcal{A}_{n^*} + 1\rangle \langle \mathcal{A}_{n^*}|
\]

Redundancy:

Since \(\prod_p \left(\hat{P}_p \right) = \hat{1} \), must impose

\[
\prod_{n^*} \hat{V}_{n^*} |\mathcal{A}_{L^*}\rangle = |\mathcal{A}_{L^*}\rangle
\]

on \(\mathcal{H}^* \). This is magnetic Gauss law.
The dual formulation

<table>
<thead>
<tr>
<th>Original</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>plaquette, p</td>
<td>site, n^*</td>
</tr>
<tr>
<td>plaquette operator, \hat{P}_p</td>
<td>site raising operator, \hat{Q}_{n^*}</td>
</tr>
<tr>
<td>link ℓ</td>
<td>(perpendicular) link, ℓ^*</td>
</tr>
<tr>
<td>field square, E^2_ℓ</td>
<td>field laplacian, $\hat{U}{n^*} \partial_i^+ \partial_i^- \hat{U}{n^*}$.</td>
</tr>
</tbody>
</table>
The emergence of duality

Reconstruction begets duality

The dual formulation

<table>
<thead>
<tr>
<th>Original</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>plaquette, p</td>
<td>site, n^*</td>
</tr>
<tr>
<td>plaquette operator, \hat{P}_p</td>
<td>site raising operator, \hat{Q}_n^*</td>
</tr>
<tr>
<td>link ℓ</td>
<td>(perpendicular) link, ℓ^*</td>
</tr>
<tr>
<td>field square, E^2_ℓ</td>
<td>field laplacian, $\hat{U}{n^*} \partial_i^+ \partial_i^- \hat{U}{n^*}$</td>
</tr>
</tbody>
</table>

We have $\langle A'_L | \hat{H} | A_L \rangle = \langle A'_L^* | \hat{H} | A_L^* \rangle$ for the dual Hamiltonian

$$\hat{H} = \frac{1}{2a_s} \sum_{n^*} \left[\frac{1}{\tilde{g}_s^2} \left(2 - \hat{Q}_{n^*} - \hat{Q}_{n^*}^\dagger \right) \right.$$

$$\left. - \frac{\tilde{g}_t^2}{\xi^2} a_s^2 \hat{U}_{n^*}^\dagger \partial_i^+ \partial_i^- \hat{U}_{n^*} \right], \quad (D = 2)$$

(subject to magnetic Gauss).
Solving the dual Gauss law:

1. Fix one $\mathcal{A}_n = 0$.

 ▶ Break translational symmetries

 ▶ $\hat{\mathcal{H}}$ becomes nonlocal

 ■ Truncation can be done as

 $|\mathcal{A}_n| \leq \Lambda$
Solving the dual Gauss law:

1. Fix one $A_n^* = 0$.
 - Break translational symmetries
 - $\hat{\mathcal{H}}$ becomes nonlocal
 - Truncation can be done as $|A_n^*| \leq \Lambda$

2. Restrict states to subspace on which $\prod_n^\ast \hat{Q}_n^\ast = 1$
 - Truncation can be done on argument of Q_n^\ast phases (equivalent to regulating B in original theory)
Summary

1. Duality transformation naturally emerges from building $\nabla \cdot \mathbf{E} = 0$ into \mathcal{H}

2. Formulating and truncating dual theory preferable for weak coupling
Summary

1. Duality transformation naturally emerges from building $\nabla \cdot E = 0$ into \mathcal{H}

2. Formulating and truncating dual theory preferable for weak coupling

Current/future work

- Putting in matter
 - Want: Local Hilbert spaces, $\hat{\mathcal{H}}$ built from local operators
 - How much redundancy?

- Extend to non-Abelian
 - Local field description possible with non-Abelian lattice duality? (prepotential formalism)
I thank Natalie Klco and Martin Savage at the Institute for Nuclear Theory for helpful conversations.

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1256082.
E fluctuations at weak coupling

Analogy to SHO: (electric field is momentum, gauge field is coordinate)

\[H_E = \frac{1}{2a_s} \sum_{\ell} \tilde{g}_t^2 \hat{E}_\ell^2 \sim \frac{1}{2m} \hat{p}^2 \]

\[H_B = \frac{1}{2a_s} \left[\frac{1}{\tilde{g}_s^2} \sum_p \left(2 - \hat{P}_p - \hat{P}_p^\dagger \right) \right] \sim \frac{k}{2} \hat{x}^2 \]

Read off

\[m \sim 1/\tilde{g}_t^2, \quad k \sim 1/\tilde{g}_s^2 \]

By dimensional analysis,

\[\langle \hat{p}^2 \rangle \propto \sqrt{mk} \sim \frac{1}{\tilde{g}_t \tilde{g}_s}, \quad \langle \hat{x}^2 \rangle \propto \frac{1}{\sqrt{mk}} \sim \tilde{g}_t \tilde{g}_s \]
Topological sectors

Original formulation (on periodic lattice) has many gauge-invariant states decoupled from $|\Omega\rangle$

- Topological Polyakov loops are gauge-invariant
- Define class representatives,

$$|\nu\rangle \equiv \prod_{i=1}^{d} \left(\hat{W}(C_i) \right)^{\nu_i} |0\rangle, \quad \nu_i \in \mathbb{Z}.$$

with $\hat{W}(C_i)$ the product of oriented \hat{U}_i's along a closed loop C_i wrapping direction i.

- An \hat{H} containing only elementary Wilson loops cannot cause transitions

Fully general state:

$$|\mathcal{A}\rangle_{\nu} = \prod_{p} \left(\hat{P}_p \right)^{\mathcal{A}_p} |\nu\rangle, \quad \mathcal{A}_p \in \mathbb{Z}.$$
Dual Hamiltonian with topology

Since ν’s don’t talk to each other, we fix ν. We must adapt \(\mathcal{H} \) to get the right matrix elements:

\[
\mathcal{H} \rightarrow \mathcal{H}^\nu = \mathcal{H}_B + \mathcal{H}_E^\nu, \quad (\mathcal{H}_B \text{ unchanged})
\]

\[
\mathcal{H}_E^\nu = \frac{1}{2a_s} \sum_{n^*} \left[-\frac{g_t^2}{\xi_2} a_s^2 \hat{\mathcal{U}}_{n^*}^\dagger \Delta \hat{\mathcal{U}}_{n^*} \right], \quad (D = 2)
\]

Here we have generalized to a **covariant Laplacian** \(\Delta = \sum_{i=1}^{2} D_i^+ D_i^- \),

\[
D_1^+ F_{n^*} = (\mathcal{W}\{n^*,n^*-e_1\} F_{n^*-e_1} - F_{n^*})/a_s ,
\]

\[
D_2^+ F_{n^*} = (\mathcal{W}\{n^*,n^*+e_2\} F_{n^*+e_2} - F_{n^*})/a_s ,
\]

involving the (dual lattice) **connection**

\[
\mathcal{W}_\mathcal{L}^* = \begin{cases}
 e^{i\xi \nu_i} , & \text{if } \mathcal{L} \in C_i; \\
 1 , & \text{otherwise}
\end{cases}
\]
Appendix

Further details

Dual Hamiltonian in $d = 3 + 1$

For $D = 3$ spatial dimensions, $p \leftrightarrow \ell^*$ (rather than $p \leftrightarrow n^*$).

We define \hat{D}_{ℓ^*}’s and \hat{U}_{ℓ^*}’s on local dual link Hilbert spaces by direct analogy.

Then

$$\hat{H}_\nu = \frac{1}{2a_s} \left[\sum_{\ell^*} \frac{1}{\tilde{g}_s^2} \left(2 - \hat{D}_{\ell^*} - \hat{D}_{\ell^*}^\dagger \right) \right. $$

$$+ \left. \frac{\tilde{g}_t^2}{\xi^2} \sum_{p^*} \left(2 - \left(\hat{W}_{p^*} \hat{P}_{p^*} + \text{h.c.} \right) \right) \right] ~ (D = 3).$$

Dual plaquettes \hat{P}_{p^*} are usual products of \hat{U}_{ℓ^*}’s, and

$$\hat{W}_{p^*} = \begin{cases} e^{i \xi \nu_i}, & \text{if } \ell \in C_i; \\ 1, & \text{otherwise}. \end{cases}$$

