Update on the improved lattice calculation of direct CP-violation in K decays

Christopher Kelly

(RBC & UKQCD Collaboration)

Lattice 2018, East Lansing, MI, USA
July 26th 2018
The RBC & UKQCD collaborations

BNL and BNL/RBRC
Yasumichi Aoki (KEK)
Mattia Bruno
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Christoph Lehner
Meifeng Lin
Aaron Meyer
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni

University of Connecticut
Tom Blum
Dan Hoying (BNL)
Luchang Jin (RBRC)
Cheng Tu

Edinburgh University
Peter Boyle
Guido Cossu
Luigi Del Debbio
Tadeusz Janowski
Richard Kenway
Julia Kettle
Fionn O'haigan
Brian Pendleton
Antonin Portelli
Tobias Tsang
Azusa Yamaguchi

University of Liverpool
Nicolas Garron

MIT
David Murphy

Peking University
Xu Feng

University of Southampton
Jonathan Flynn
Vera Guelpers
James Harrison
Andreas Juettner
James Richings
Chris Sachrajda

Stony Brook University
Jun-Sik Yoo
Sergey Syritsyn (RBRC)

York University (Toronto)
Renwick Hudspith
Motivation for studying $K \to \pi\pi$ Decays

- Likely explanation for matter/antimatter asymmetry in Universe, baryogenesis, requires violation of CP.
- Amount of CPV in Standard Model appears too low to describe measured M/AM asymmetry: tantalizing hint of new physics.
- Direct CPV first observed in late 90s at CERN (NA31/NA48) and Fermilab (KTeV) in $K^0 \to \pi\pi$:

$$\eta_{00} = \frac{A(K_L \to \pi^0\pi^0)}{A(K_S \to \pi^0\pi^0)}, \quad \eta_{+-} = \frac{A(K_L \to \pi^+\pi^-)}{A(K_S \to \pi^+\pi^-)}.$$

$$\text{Re}(\epsilon'/\epsilon) \approx \frac{1}{6} \left(1 - \left|\frac{\eta_{00}}{\eta_{\pm}}\right|^2\right) = 16.6(2.3) \times 10^{-4} \quad \text{(experiment)}$$

- In terms of isospin states: $\Delta I=3/2$ decay to $I=2$ final state, amplitude A_2
 $\Delta I=1/2$ decay to $I=0$ final state, amplitude A_0

$$A(K^0 \to \pi^+\pi^-) = \sqrt{\frac{2}{3}} A_0 e^{i\delta_0} + \sqrt{\frac{1}{3}} A_2 e^{i\delta_2},$$

$$A(K^0 \to \pi^0\pi^0) = \sqrt{\frac{2}{3}} A_0 e^{i\delta_0} - 2 \sqrt{\frac{1}{3}} A_2 e^{i\delta_2}. \quad \omega = \text{Re}A_2/\text{Re}A_0$$

$$\epsilon' = \frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}} \left(\frac{\text{Im}A_2}{\text{Re}A_2} - \frac{\text{Im}A_0}{\text{Re}A_0}\right) \quad (\delta_i \text{ are strong scattering phase shifts.})$$

- Small size of ϵ' makes it particularly sensitive to new direct-CPV introduced by many BSM models.
Summary of 2015 published result

- A_2 previously computed on lattice precisely (12% total error)

- Computed A_0 on $32^3 \times 64$ Mobius DWF ensemble with Iwasaki+DSDR gauge action. G-parity BCs in 3 directions to give physical kinematics.

- Single, coarse lattice with $a^{-1} = 1.38$ GeV but large physical volume to control FV errors.

- Re(A_0) and Re(A_2) from expt.

- Lattice values for Im(A_0), Im(A_2) and the phase shifts.

\[
\text{Re} \left(\frac{\epsilon'}{\epsilon} \right) = \frac{1.38(5.15)(4.43)}{16.6(2.3)} \times 10^{-4}
\]

(our result)

(our result)

(experiment)

- Find reasonable consistency with experimental value (at 2.1σ level).
- Total error on is ~3x the experimental error.
- “This is now a quantity accessible to lattice QCD”!

- Focus since has been to improve statistics and reduce / improve understanding of systematic errors.
The $\pi\pi$ puzzle

1438 cfgs
(PRELIMINARY)

(From dispersion theory + expt. data)
Resolving the $\pi\pi$ puzzle

- Since 2015 publication have been working to resolve discrepancy between our lattice I=0 $\pi\pi$ phase shift ($\delta_0=23.8(4.9)(1.2)$) and that predicted by dispersion theory ($\sim 34^\circ$). [RBC&UKQCD PRL 115 (2015) 21, 212001] [Colangelo et al, Nucl.Phys. B603 (2001) 125-179]

- Increased statistics from 216 to almost 1400 configurations, a 6.5x increase. Observed discrepancy becomes more significant.

- Alongside existing 1s hydrogen wavefunction pion source smearing we added a 2s form and a scalar ($\sigma=\bar{u}d$) $\pi\pi$ operator to the 2-pt function calculation.

- Also added 2s pion sources to $K\to\pi\pi$ calculation.

- While 2s data appears too noisy, combined fits (or GEVP) to $\pi\pi\to\pi\pi$, $\sigma\to\pi\pi$ and $\sigma\to\sigma$ correlators result in considerably lower ground-state energy: [cf. T.Wang, prev. talk]

 $508(5)$ MeV [1386 cfgs] from $\pi\pi\to\pi\pi$ alone
 vs
 $483(1)$ MeV [501 cfgs] from sim. fit of all 3 correlators.

- Strong new evidence for nearby excited finite-volume $\pi\pi$ state. Indeed such a state with $E \sim 770$ MeV is predicted by dispersion theory.
Implications for K → ππ and resolution

- Despite vast increase in statistics, *this state cannot be resolved based on the time dependence using only a single ππ operator.*
- Possibly a significant underestimate of excited state systematic in K → ππ calculation that can only be resolved by adding additional operators.
- In response we have **expanded the scope of the calculation:**
 - **Added K → σ matrix elements.** This involved significant work in both deriving the Wick contractions and in implementing/optimizing the parallel code.
 - **Added more pion momenta.** Previously we computed only zero-momentum ππ-states with pion momenta in the set (±1,±1,±1)π/L (8-total). We have now added 24 new momenta: (±3,±1,±1)π/L + perms.
- Result is **3x increase in the number of S-wave ππ operators in K → ππ**
- Using sim. fits / GEVP to 2-pt function data can then determine appropriate linear comb. of these 3 sets of matrix elements that best projects onto the ground-state.
- Also added ππ 2pt functions with non-zero total ππ momenta. Will allow calculation of phase shift at several (smaller) additional center-of-mass energies.
 - Additional points that can be compared to dispersive result / experiment
 - Improve ~11% systematic on Lellouch-Luscher factor associated with slope of phase shift.
Effect of projecting 2pt data onto ground-state using existing data (c/o T.Wang)

Expect even better ground-state projection with new higher-momentum operators in upcoming analysis.
Scaling of $\pi \pi$ contraction timing

- On 512-nodes of BG/Q, computing the $8 \times 8 = 64$ $\pi \pi$ contractions with 0 total $\pi \pi$ momentum takes 13.6 mins.

- However: 32 pion momenta, computing all contractions with $p_{\pi \pi} = (0, 0, 0), (\pm 2\pi/L, 0, 0), (\pm 2\pi/L, \pm 2\pi/L, 0), (\pm 2\pi/L, \pm 2\pi/L, \pm 2\pi/L) + \text{perms}$
 Number rises to 7848 contractions: ~ 27.8 hours on the $\pi \pi$ contractions alone!

- To make tractable take advantage of symmetries.
 Take care to use only those that do not significantly affect statistical error.

- To determine symmetries to use, we studied our $\pi \pi$ data including 121 cfgs of new data at non-zero $\pi \pi$ momentum computed using saved meson fields.

- Examined:

 Parity: exchange $\vec{p} \rightarrow -\vec{p}$

 Axis permutation: global interchange of momentum components
 (GPBC in 3 dirs so all spatial dirs equivalent)
"Auxiliary diagram" symmetry:

Source/sink timeslice interchange coupled with γ^5 hermiticity relates $\pi\pi$ correlators (after temporal folding/config avg):

$$\langle C(\vec{p}_{\text{src}}^{\pi_1}, \vec{p}_{\text{snk}}^{\pi_1}, \vec{p}_{\text{tot}}) \rangle \equiv$$

$$\langle C(-\vec{p}_{\text{tot}} + \vec{p}_{\text{snk}}^{\pi_1}, \vec{p}_{\text{tot}} - \vec{p}_{\text{src}}^{\pi_1}, -\vec{p}_{\text{tot}}) \rangle$$

[Parity + aux.diag together preserve p_{tot}]
\(p_{\text{tot}} = 0 \)

- Observe all symmetries individually well realized and do not significantly affect statistical error.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Orig (64 diags)</th>
<th>Pty+perm (10 diags)</th>
<th>Aux+pty+perm (8 diags)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>A_{\pi\pi}</td>
<td>^2)</td>
<td>0.1609(22)</td>
</tr>
<tr>
<td>(E_{\pi\pi})</td>
<td>0.3686(33)</td>
<td>0.3690(36)</td>
<td>0.3672(36)</td>
</tr>
<tr>
<td>(C_{\pi\pi})</td>
<td>3(10) \times 10^{-5}</td>
<td>3(10) \times 10^{-5}</td>
<td>-1(11) \times 10^{-5}</td>
</tr>
<tr>
<td>(\chi^2/\text{dof})</td>
<td>1.30(57)</td>
<td>1.25(54)</td>
<td>1.10(52)</td>
</tr>
</tbody>
</table>

- 8x reduction in #correlators for base pion momentum set!

\(p_{\text{tot}} = (\pm 2,0,0)\pi/L + \text{perms} \)

- Applied globally, utilizing parity for 2x reduction in diags does not affect error, but axis permutation does: suggests (2,0,0), (0,2,0) and (0,0,2) largely uncorrelated.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Orig (96 diags)</th>
<th>Pty (48 diags)</th>
<th>Pty+perm (16 diags)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>A_{\pi\pi}</td>
<td>^2)</td>
<td>0.3466(41)</td>
</tr>
<tr>
<td>(E_{\pi\pi})</td>
<td>0.3869(23)</td>
<td>0.3869(23)</td>
<td>0.3879(40)</td>
</tr>
<tr>
<td>(C_{\pi\pi})</td>
<td>2(1) \times 10^{-4}</td>
<td>2(1) \times 10^{-4}</td>
<td>4(2) \times 10^{-4}</td>
</tr>
</tbody>
</table>

- Take second column and allow parity, axis perm and aux. diag. to relate the 48 diags:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Pty (48 diags)</th>
<th>Pty+perm+aux (21 diags)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>A_{\pi\pi}</td>
<td>^2)</td>
</tr>
<tr>
<td>(E_{\pi\pi})</td>
<td>0.3869(23)</td>
<td>0.3868(23)</td>
</tr>
<tr>
<td>(C_{\pi\pi})</td>
<td>2(1) \times 10^{-4}</td>
<td>2(1) \times 10^{-4}</td>
</tr>
</tbody>
</table>
• 4.5x reduction in #diagrams with no observed increase in errors.

• Similar picture observed for \((\pm 2, \pm 2, 0)\pi/L\) and \((\pm 2, \pm 2, \pm 2)\pi/L\):
 Different orientations (up to parity) largely uncorrelated but applying symmetries for fixed \(p_{\text{tot}}\) leaves errors unchanged.

• For our extended calculation
 Using parity to exclude 1/2 of diags with \(p_{\text{tot}} \neq 0\): 7848 diags \(\rightarrow\) 4436
 Then applying symmetries with fixed \(p_{\text{tot}}\):

<table>
<thead>
<tr>
<th>(p_{\text{tot}})</th>
<th>Total</th>
<th>pty</th>
<th>pty+perm</th>
<th>pty+perm+aux</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0, 0)</td>
<td>1024</td>
<td>512</td>
<td>102</td>
<td>62</td>
</tr>
<tr>
<td>(2, 0, 0)</td>
<td>1200</td>
<td>1200</td>
<td>654</td>
<td>357</td>
</tr>
<tr>
<td>(2, 2, 0)</td>
<td>768</td>
<td>768</td>
<td>408</td>
<td>228</td>
</tr>
<tr>
<td>(−2, 2, 0)</td>
<td>768</td>
<td>768</td>
<td>384</td>
<td>216</td>
</tr>
<tr>
<td>(2, 2, 2)</td>
<td>169</td>
<td>169</td>
<td>33</td>
<td>21</td>
</tr>
<tr>
<td>(−2, 2, 2)</td>
<td>507</td>
<td>507</td>
<td>267</td>
<td>153</td>
</tr>
<tr>
<td>Total</td>
<td>4436</td>
<td></td>
<td>1037</td>
<td></td>
</tr>
</tbody>
</table>

• Overall 7.6x reduction in diagram count, reducing time (pre-optimization) to 3.7 hours.
BG/Q Timings and Status

<table>
<thead>
<tr>
<th>Description</th>
<th>Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light quark Lanczos</td>
<td>5.78</td>
</tr>
<tr>
<td>Light quark A2A vectors</td>
<td>4.48</td>
</tr>
<tr>
<td>Heavy quark A2A vectors</td>
<td>2.68</td>
</tr>
<tr>
<td>Gauge fix</td>
<td>0.31</td>
</tr>
<tr>
<td>Kaon 2pt function</td>
<td>0.44</td>
</tr>
<tr>
<td>Kaon WW meson fields</td>
<td>0.08</td>
</tr>
<tr>
<td>$K \to \sigma$ contractions</td>
<td>0.67</td>
</tr>
<tr>
<td>Sigma 2pt function</td>
<td>0.02</td>
</tr>
<tr>
<td>Light-light 1s pion meson fields</td>
<td>5.23</td>
</tr>
<tr>
<td>$\pi\pi \to \sigma$ 2pt function</td>
<td>0.06</td>
</tr>
<tr>
<td>$K \to \pi\pi$ contractions</td>
<td>7.02</td>
</tr>
<tr>
<td>Pion 2pt function</td>
<td>0.01</td>
</tr>
<tr>
<td>$\pi\pi$ 2pt contractions</td>
<td>1.51</td>
</tr>
<tr>
<td>Configuration total</td>
<td>29.10</td>
</tr>
</tbody>
</table>

- Currently running on 3x 512-node partitions of BG/Q at BNL
- Timing per configuration ~29 hours
- $\pi\pi$ contraction time only 1.5 hours after utilizing symmetries and code optimizations.
- Currently have measured 44 configurations (as of last night)
- New data can be combined with existing 1400 configs using super-jackknife procedure
- **Expect to be able to start serious analysis when ~100 configs, i.e. within the month.**
Conclusions

- Inclusion of additional scalar $\pi\pi$ operator in order to attempt to understand discrepancy with dispersion theory reveals nearby excited state.
- State unresolvable with just single operator, even with 6.5x more statistics.
- Suggests excited state systematic on published $K \rightarrow \pi\pi$ calculation significantly underestimated.
- In response added scalar operator and 24 additional pion momenta to $K \rightarrow \pi\pi$ calc, **increasing # of S-wave $\pi\pi$ operators in $K \rightarrow \pi\pi$ by 3x**
- Using 2pt data will ascertain appropriate linear combination that best projects onto ground state.
- New pion momenta and inclusion of non-zero CoM $\pi\pi$ momenta in 2pt calculation required utilization of symmetries to make computationally tractable.
- Generating 5 new measurements every 2 days on 3x 512-node BG/Q machines.

We hope to have enough new data to begin serious analysis within the next few weeks

Thank you!
Statistics increase

- Original goal was a 4x increase in statistics over 216 configurations used in 2015 analysis.
- 4x reduction in configuration generation time obtained via algorithmic developments (exact one-flavor implementation)
- Large-scale programme performed involving many machines:

<table>
<thead>
<tr>
<th>Source</th>
<th>Determinant computation</th>
<th>Independent configs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Waters</td>
<td>RHMC</td>
<td>34+18+4+3</td>
</tr>
<tr>
<td>KEKSC</td>
<td>RHMC</td>
<td>106</td>
</tr>
<tr>
<td>BNL</td>
<td>RHMC</td>
<td>208</td>
</tr>
<tr>
<td>DiRAC</td>
<td>RHMC</td>
<td>151</td>
</tr>
<tr>
<td>KEKSC</td>
<td>EOFA</td>
<td>275+215</td>
</tr>
<tr>
<td>BNL</td>
<td>EOFA</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1259 total</td>
</tr>
</tbody>
</table>

- Measurements performed using IBM BG/Q machines at BNL and the Cori computer (Intel KNL) at NERSC largely complete.
- Including original data, now have 6.7x increase in statistics!
1438 cfgs vs 216 cfgs (PRELIMINARY)
Systematic error improvements

<table>
<thead>
<tr>
<th>Description</th>
<th>Error</th>
<th>Description</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite lattice spacing</td>
<td>12%</td>
<td>Finite volume</td>
<td>7%</td>
</tr>
<tr>
<td>Wilson coefficients</td>
<td>12%</td>
<td>Excited states</td>
<td>≤ 5%</td>
</tr>
<tr>
<td>Parametric errors</td>
<td>5%</td>
<td>Operator renormalization</td>
<td>15%</td>
</tr>
<tr>
<td>Unphysical kinematics</td>
<td>≤ 3%</td>
<td>Lellouch-Lüscher factor</td>
<td>11%</td>
</tr>
<tr>
<td>Total (added in quadrature)</td>
<td></td>
<td></td>
<td>27%</td>
</tr>
</tbody>
</table>

NPR+Wilson Coefficients

- NPR error large due to use of 1-loop PT to match to MSbar at low, 1.53 GeV renormalization scale.
- Since 2015 have improved NPR error 15% → 8% (preliminary) by increasing scale to 2.29 GeV using step-scaling procedure. [PoS LATTICE2016 (2016) 308]
- Inclusion of dim.6 gauge-invariant operator G_1 which mixes with Q_i under renormalization, effects demonstrated to be %-scale as expected. [G. McGlynn arxiv:1605.08807]

Do not expect significant improvement in Wilson coeffs. error as dominated by use of PT to cross the charm threshold (1.29 GeV).

- Working on circumventing this by computing 3→4 flavor matching non-perturbatively.
- Requires $\mu \ll m_c$. At these low energies, MOM-scheme NPR severely hampered by increased mixing with tower of gauge-noninvariant operators.
- Circumvent using position-space NPR which does not require gauge fixing.
Discretization error

- Currently have results only on single lattice with coarse lattice spacing $a^{-1}=1.38(1)$ GeV.
- Require second lattice spacing. Going to finer lattice requires more lattice sites; prohibitively expensive for current gen. computers.
- Promising alternative is to go to a coarser lattice spacing, $a^{-1} \sim 1.0$ GeV. Preliminary studies suggest discretization errors remain under control. [EPJ Web Conf. 175 (2018) 02006]

Related projects on the horizon:

- Performing calculation taking advantage of modern multi-operator techniques to fit excited-state $\pi\pi$ contributions directly, without G-parity BCs.
- Laying the groundwork for non-perturbatively computing the effects of isospin breaking and electromagnetism. [EPJ Web Conf. 175 (2018) 13016]