Comparing Different Parameterizations of the z-expansion

E. Gustafson 1 Y. Meurice 1

1Department of Physics and Astronomy
The University of Iowa

July 27, 2018
Table of Contents

1 Background
 • B physics
 • Parameterizations of vector form factor

2 Methodology for testing parameterizations

3 Results
 • BGL Results
 • Tables
 • Plots
 • BCL Results
 • Tables
 • Plots

4 Conclusions
 • Comparisons between BCL and BGL
 • Take Away
Background: Decay Process: $B \rightarrow \pi \ell \nu_\ell$

- Decay Rate Expression

Differential Decay Rate (Massless Lepton Limit)

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 m_B^3} \lambda (q^2)^{3/2} |f_+(q^2)|^2$$

-λ(mass of W)
Background: Decay Process: $B \rightarrow \pi \ell \nu_\ell$

- **Decay Rate Expression**

Differential Decay Rate (Massless Lepton Limit)

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 m_B^3} \lambda(q^2)^{3/2} |f_+(q^2)|^2$$

- $\lambda(q^2) = \left((m_B^2 + m_\pi^2 - q^2)^2 - 4m_B^2 m_\pi^2\right)$
Background: Decay Process: $B \rightarrow \pi \ell \nu_\ell$

- **Decay Rate Expression**

Differential Decay Rate (Massless Lepton Limit)

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 m_B^3} \lambda(q^2)^{3/2} |f_+(q^2)|^2$$

- $\lambda(q^2) = ((m_B^2 + m_\pi^2 - q^2)^2 - 4m_B^2 m_\pi^2)$

- Exclusive and inclusive decays have determinations of V_{ub} which differ by 2.4σ [1]
Conformal Mapping

- Transform $q^2 \rightarrow z(q^2, t_0) = \frac{\sqrt{t_+-q^2}-\sqrt{t_+-t_0}}{\sqrt{t_+-q^2}+\sqrt{t_+-t_0}}$ [5]
Conformal Mapping

- Transform $q^2 \rightarrow z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$ [5]
- Visually what is happening:

Figure: Image is borrowed from upcoming Fermilab $B \rightarrow K$ paper, Image Credit: Yuzhi Liu
BGL expansion

Parameterization of vector form factor

\[f_+(q^2; t_0) = \frac{1}{B(q^2)\phi(q^2)} \sum_{n=0}^{N} a_n z^n \] [4]

- \(B(q^2) \) is a function which characterizes the pole in the \(q^2 \) plane
- \(\phi(q^2) \) is a function which arises from unitarity requirements and imposes a simple constraint on the coefficients
Parameterization of the vector form factor

\[
f_+(q^2; t_0) = \frac{1}{1-q^2/m_B^2} \sum_{n=0}^{N-1} b_n \left(z^n - (-1)^{N-n} \frac{n}{N} z^N \right) [3]
\]

- The complicated function of \(z \) comes from the conservation of angular momentum requirement that: \(\frac{df_+(q^2)}{dz} \bigg|_{z=-1} = 0 \).
- \(z = -1 \) corresponds to the threshold for \(B^* \).
- Fixes issue with BGL parameterization by having the appropriate \(1/q^2 \) falloff behavior.
Outline of methodology

1.) Fit the parameterization of the form factor over different regions of experimental data.
Outline of methodology

1.) Fit the parameterization of the form factor over different regions of experimental data.

2.) Compare the parameterization within the fitted regions and outside the fitted region. (using the a predictive measure inspired by the χ^2 value)
Outline of methodology

1.) Fit the parameterization of the form factor over different regions of experimental data.

2.) Compare the parameterization within the fitted regions and outside the fitted region. (using the a predictive measure inspired by the χ^2 value)

3.) Use the fit of the full experimental data set to generate a large number of bootstrap samples (we have 52 data points) which can then be used to test the stability of the fit of the smaller region (e.g. corresponding to the region where we have lattice data).
Outline of methodology

1.) Fit the parameterization of the form factor over different regions of experimental data.

2.) Compare the parameterization within the fitted regions and outside the fitted region. (using the a predictive measure inspired by the χ^2 value)

3.) Use the fit of the full experimental data set to generate a large number of bootstrap samples (we have 52 data points) which can then be used to test the stability of the fit of the smaller region (e.g. corresponding to the region where we have lattice data).

4.) Test stability of fit coefficients
Outline of methodology

1.) Fit the parameterization of the form factor over different regions of experimental data.

2.) Compare the parameterization within the fitted regions and outside the fitted region. (using the a predictive measure inspired by the χ^2 value)

3.) Use the fit of the full experimental data set to generate a large number of bootstrap samples (we have 52 data points) which can then be used to test the stability of the fit of the smaller region (e.g. corresponding to the region where we have lattice data).

4.) Test stability of fit coefficients

5.) We do not use any lattice data
Efficacy of predictions: BGL parameterization

\[X_p^2 = \frac{1}{N_{\text{data points}}} \sum_i \frac{(\Delta B_{\text{exp}} - \Delta B_{\text{fit}})_i}{(\sigma_i^2)} \]

- \(X_p^2 \) is not minimized.

<table>
<thead>
<tr>
<th>fit region</th>
<th>3 params</th>
<th>4 params</th>
<th>5 params</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 – 26.4 GeV^2</td>
<td>1.02</td>
<td>0.88</td>
<td>1.00</td>
</tr>
<tr>
<td>10 – 26.4 GeV^2</td>
<td>2.12</td>
<td>3.23</td>
<td>5.15</td>
</tr>
<tr>
<td>15 – 26.4 GeV^2</td>
<td>3.42</td>
<td>1.90</td>
<td>7.79</td>
</tr>
<tr>
<td>17 – 26.4 GeV^2</td>
<td>17.56</td>
<td>897</td>
<td>809</td>
</tr>
</tbody>
</table>
Figure: Traditional BGL fits with number of parameters ranging from 3 to 5 (left to right) and fit ranges decreasing (largest: top to smallest: bottom)
stability of fits: coefficients
Efficacy of predictions: BCL parameterization

\[X_p^2 = \frac{1}{N_{data\ points}} \sum_{i} \frac{(\Delta B_{exp} - \Delta B_{fit})_i}{(\sigma_i^2)} \]

- \(X_p^2 \) is not minimized.

<table>
<thead>
<tr>
<th>fit region</th>
<th>2 params.</th>
<th>3 params.</th>
<th>4 params.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 – 26.4 GeV(^2)</td>
<td>1.04</td>
<td>1.05</td>
<td>0.95</td>
</tr>
<tr>
<td>10 – 26.4 GeV(^2)</td>
<td>1.793</td>
<td>2.073</td>
<td>3.77</td>
</tr>
<tr>
<td>15 – 26.4 GeV(^2)</td>
<td>2.62</td>
<td>3.34</td>
<td>4.33</td>
</tr>
<tr>
<td>17 – 26.4 GeV(^2)</td>
<td>7.97</td>
<td>48.5</td>
<td>156</td>
</tr>
</tbody>
</table>
Figure: Traditional BCL fits with number of parameters ranging from 2 to 4 (left to right) and fit ranges decreasing (largest: top to smallest: bottom)
stability of fits: Coefficients b_i

- stable coefficients: b_0, b_1, and b_2
- coefficient b_3 is less well distributed.
The BCL parameterizations is stable up to order z^3 (3 parameters)
BCL takeaway

- The BCL parameterizations is stable up to order z^3 (3 parameters)
- The overestimation of the partial branching fractions is likely caused by overfitting due to the large statistical uncertainties in the large q^2 regime.
BCL takeaway

- The BCL parameterizations is stable up to order z^3 (3 parameters).

- The overestimation of the partial branching fractions is likely caused by overfitting due to the large statistical uncertainties in the large q^2 regime.

- Predictions become far more accurate when extended to the $15 \text{ GeV}^2 < q^2 < 26.4 \text{ GeV}^2$ region, slightly outside the region where we have lattice determinations of the form factors.
Comparison of BGL and BCL near lattice range (15 – 26.4 GeV2) at maximal order z^2

BGL fit:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>0.0245(21)</td>
</tr>
<tr>
<td>a_1</td>
<td>-0.013(20)</td>
</tr>
<tr>
<td>a_2</td>
<td>-0.13(19)</td>
</tr>
<tr>
<td>χ^2/d.o.f.</td>
<td>0.91</td>
</tr>
<tr>
<td>X_p^2</td>
<td>3.23</td>
</tr>
</tbody>
</table>

BCL fit:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>0.406(11)</td>
</tr>
<tr>
<td>b_1</td>
<td>-0.42(10)</td>
</tr>
<tr>
<td>b_2</td>
<td>[0.70(67)]</td>
</tr>
<tr>
<td>χ^2/d.o.f.</td>
<td>0.97</td>
</tr>
<tr>
<td>X_p^2</td>
<td>2.62</td>
</tr>
</tbody>
</table>
Comparison of BGL and BCL in lattice range (17 – 26.4 GeV2) at order z^2

BGL Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>0.0240(20)</td>
</tr>
<tr>
<td>a_1</td>
<td>-0.009(32)</td>
</tr>
<tr>
<td>a_2</td>
<td>-0.03(41)</td>
</tr>
<tr>
<td>χ^2/d.o.f.</td>
<td>0.96</td>
</tr>
<tr>
<td>X_p^2</td>
<td>17.59</td>
</tr>
</tbody>
</table>

BCL Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>0.405(11)</td>
</tr>
<tr>
<td>b_1</td>
<td>-0.30(16)</td>
</tr>
<tr>
<td>b_2</td>
<td>[-0.6(1.5)]</td>
</tr>
<tr>
<td>χ^2/d.o.f.</td>
<td>0.96</td>
</tr>
<tr>
<td>X_p^2</td>
<td>7.97</td>
</tr>
</tbody>
</table>
Examination

• for 15 – 26.4 GeV2 fit region predictions are nearly identical. BCL errorbands are smaller.
Examination

- for 15 – 26.4 GeV2 fit region predictions are nearly identical. BCL errorbands are smaller.
- Comparing χ^2/d.o.f. values for fit are nearly identical: χ^2/d.o.f. = 0.91 (BGL) and χ^2/d.o.f. = 0.97
for 15 – 26.4 GeV^2 fit region predictions are nearly identical. BCL errorbands are smaller.

Comparing χ^2/d.o.f. values for fit are nearly identical: χ^2/d.o.f. = 0.91 (BGL) and χ^2/d.o.f. = 0.97

Considering only the lattice region (17 – 26.4 GeV^2) BCL parameterization overestimates partial branching fractions less than BGL parameterization.
Examination

- for $15 - 26.4$ GeV2 fit region predictions are nearly identical. BCL errorbands are smaller.

- Comparing χ^2/d.o.f. values for fit are nearly identical: χ^2/d.o.f. $= 0.91$ (BGL) and χ^2/d.o.f. $= 0.97$

- Considering only the lattice region ($17 - 26.4$ GeV2) BCL parameterization overestimates partial branching fractions less than BGL parameterization.

- Comparing χ^2/d.o.f. are nearly equivalent.
Comparisons between BCL and BGL

Take Away

What is the take away?

- the BCL parameterization provides a better estimate of the low q^2 regime than the BGL parameterization does.
What is the take away?

- the BCL parameterization provides a better estimate of the low q^2 regime than the BGL parameterization does.
- order z^2 and z^3 fits provide determinations determinations of the decay spectrum than z^4 parameter fits.
What is the take away?

- the BCL parameterization provides a better estimate of the low q^2 regime than the BGL parameterization does.
- order z^2 and z^3 fits provide determinations of the decay spectrum than z^4 parameter fits.
- Efficacy of this tool when examining $B \rightarrow \pi \ell \nu$ is limited by the statistical uncertainty associated with partial branching fractions measured in the high q^2 region due to phase space suppression.
Why should the lattice community care?

- this procedure can help us identify which parameterizations of the form factors provide better extrapolation of our lattice calculations.
Why should the lattice community care?

- this procedure can help us identify which parameterizations of the form factors provide better extrapolation of our lattice calculations.
- this procedure can identify possible energy regions of interest to examine using lattice calculations that have not been currently unexamined due to noise in signal extraction.
Where to go?

- Examine other semileptonic decay: e.g. $B_s \rightarrow K\ell\nu$, $B \rightarrow D\ell\nu$
Where to go?

- Examine other semileptonic decay: e.g. $B_s \rightarrow K\ell\nu$, $B \rightarrow D\ell\nu$
- Examine FCNC decays: e.g. $B \rightarrow \pi\ell\ell$, $\Lambda_b \rightarrow \Lambda\ell\ell$
Where to go?

- Examine other semileptonic decay: e.g. $B_s \rightarrow K \ell \nu$, $B \rightarrow D \ell \nu$
- Examine FCNC decays: e.g. $B \rightarrow \pi \ell \ell$, $\Lambda_b \rightarrow \Lambda \ell \ell$
- Re-examine $B \rightarrow \pi \ell \nu$ when LHCb releases the results.
We would like to thank A. Schwartz for discussions regarding $B \rightarrow D$ decays. This research was supported in part by the Department of Energy under Award Numbers DOE grant DE-SC0010113.
Further Reading I

Further Reading II

Appendix: BGL functions

- \[B(q^2) = \frac{z(q^2, t_0) - z(m_{B^*}^2, t_0)}{1 - z(q^2, t_0)z(m_{B^*}^2, t_0)} \]

- \[\phi(q^2, t_0) = \sqrt{\frac{1}{32\pi \chi_1(0)}} \left(\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0} \right) \]
 \[\times \frac{t_+ - q^2}{(t_+ - t_0)^{1/4}} \left(\sqrt{t_+ - q^2} + \sqrt{t_+} \right)^{-5} \]
 \[\times \left(\sqrt{t_+ - q^2} + \sqrt{t_+ - t_-} \right)^{3/2} \]