Abstract

We report on results for the Landau gauge gluon propagator computed from large statistical ensembles and look at the compatibility of the results with the Gribov-Zwanziger tree level prediction for its refined and very refined versions. Our results show that the data is well described by the tree level estimate only and very refined versions. Our results show that the Gribov-Zwanziger tree level prediction for its refined propagator computed from large statistical ensembles becomes negligible at high momentum and very refined versions. Our results show that the Gribov-Zwanziger tree level prediction for its refined propagator computed from large statistical ensembles becomes negligible at high momentum and very refined versions.

Lattice Landau gauge gluon propagator

\[
\Delta_\Sigma(p) = 1 + \sum_{n=1}^{\infty} n^2 \delta(n^2) \frac{p^2}{n^2 + m^2}
\]

- lattice momentum
- continuum momentum
- orthogonal projector

Lattice simulations

- two large physical volume lattice simulations
- Wilson gauge action, \(\beta = 6.0 \)
- 1/4 = 1.943 GeV, \(a = 0.1016(25) \) fm,
- 64- and 80- lattice volumes:
- physical volumes: (6.57 fm)², (8.21 fm)²
- number of configurations: 2000, 550
- rotated to the Landau gauge
- \(\rho_{max} = 191 \) MeV, 153 MeV: \(\rho_{max} = 7.7 \) GeV
- renormalization: MOM scheme, scale \(\mu = 3 \) GeV
- conical and cylindrical cuts for \(p > 0.7 \) GeV
- all lattice data for \(p < 0.7 \) GeV

Global Fits: from Infrared to Ultraviolet

- for large \(p^2 \) one expects to recover the usual perturbative behaviour
- \(D(p^2) \sim \frac{1}{p^2 M^2} \left[\frac{n(p^2)}{\Lambda_{QCD}} \right]^2 \)
- \(\nu = \frac{1}{2} \) → 1-loop gluon anomalous dimension
- Interpolation between
 - RGZ for low \(p \)
 - 1-loop RG-improved expression for high \(p \)
 - \(\omega = \frac{1}{2} \Lambda_{QCD} \) \(\omega \) = 0.425 GeV, \(a_s(3 \) GeV \) = 0.3387

For more information...

... see arXiv:1803.02281 [hep-lat]

Acknowledgements

The authors acknowledge the Laboratory for Advanced Computing at University of Coimbra for providing HPC computing resources. The authors gratefully acknowledge CAPES and FAPESP for financial support. The work has been performed within the ERC Consolidator Grant (771843) and the DIAMOND project (GA871339) under the Horizon 2020 framework. The use of the Jülich Supercomputing Centre (JSC) has been provided under IDQ-16156, CERN Compute Account (no. 145103998), and the use of the Nordic Petascale and Large Scale Computing Platform. The authors acknowledge financial support from the Brazilian Ministry of Education and the Coordination for the Improvement of Higher Level Personnel (CAPES), the Brazilian National Council for Scientific and Technological Development (CNPq), and the Jülich Supercomputing Centre (JSC).