Pion Distribution Amplitude from lattice QCD: towards the continuum limit

Michael Gruber, Fabian Hutzler, Philipp Wein, Piotr Korcył

and the RQCD collaboration

Lattice2018, July 24, 2018
Pion distribution amplitude

Definition

Pion DA is the quantum amplitude that the pion moving with momentum p is built of a pair of quark and antiquark moving with momentum xp and $(1-x)p$ respectively.

Relevance

Pion photoproduction: two off-shell photons provide the hard scale necessary for the factorization into the perturbative and non-perturbative parts. Transition form factor measured most recently experimentally by BaBar '09 and Belle '12.

Implementation

2nd moment of the pion DA, $\langle \xi^2 \rangle$, can be obtained numerically from two-point correlation functions.
Pion distribution amplitude

Definition

\[
\langle 0| \bar{d}(z_2 n) \gamma_5 [z_2 n, z_1 n] u(z_1 n) |\pi(p)\rangle = \]

\[
= i f_\pi(p \cdot n) \int_0^1 dx e^{-i(z_1 x + z_2 (1-x))p \cdot n} \phi_\pi(x, \mu^2)
\]

Neglecting isospin breaking effects, \(\phi_\pi(x) \) is symmetric under the interchange of momentum fraction \(x \to (1-x) \)

\[
\phi_\pi(x, \mu^2) = \phi_\pi(1-x, \mu^2)
\]

Moments of the momentum fraction difference \(\xi = x - (1-x) \) can be estimated on the lattice

\[
\langle \xi^{2n} \rangle = \int_0^1 dx (2x - 1)^{2n} \phi_\pi(x, \mu^2)
\]

\[
\phi_\pi(x, \mu^2) = 6x(1-x) \left[1 + \sum_n a_{2n}^{\pi}(\mu) C_{2n}^{3/2} (2x - 1) \right]
\]
Local operators

The nonlocal operator can be Taylor expanded and expressed in terms of local operators with derivatives

\[
\bar{d}(z_2 n) \gamma_5 [z_2 n, z_1 n] u(z_1 n) = \sum_{k,l=0}^{\infty} \frac{z_2^k z_1^l}{k!l!} n^\rho n^{\mu_1} \ldots n^{\mu_{k+l}} M^{(k,l)}_{\rho,\mu_1,\ldots,\mu_{k+l}}
\]

where

\[
M^{(k,l)}_{\rho,\mu_1,\ldots,\mu_{k+l}} = \bar{d}(0) \bar{D}_{\mu_1} \ldots \bar{D}_{\mu_k} \bar{D}_{\mu_{k+1}} \ldots \bar{D}_{\mu_{k+l}} \gamma_5 u(0)
\]

Consequently,

\[
i^{k+l} \langle 0 | M^{(k,l)}_{\rho,\mu_1,\ldots,\mu_{k+l}} | \pi(p) \rangle = i f \pi p_{\rho} p_{\mu_1} \ldots p_{\mu_{k+l}} \langle x^l (1-x)^k \rangle
\]
Lattice operators for the 2nd moment

Two local operators are relevant

\[O_{\rho \mu \nu}^{-}(x) = \bar{d}(x) \left[\not{D}_{(\mu} \not{D}_{\nu} - 2 \not{D}_{(\mu} \not{D}_{\nu} + \not{D}_{(\mu} \not{D}_{\nu} \right] \gamma_{\rho} \gamma_{5} u(x) \]

and

\[O_{\rho \mu \nu}^{+}(x) = \bar{d}(x) \left[\not{D}_{(\mu} \not{D}_{\nu} + 2 \not{D}_{(\mu} \not{D}_{\nu} + \not{D}_{(\mu} \not{D}_{\nu} \right] \gamma_{\rho} \gamma_{5} u(x) \]

Their bare matrix elements between vacuum and a pion state are proportional to

\[\langle 0 | O_{\rho \mu \nu}^{-}(x) | \pi \rangle \sim \langle [x - (1 - x)]^2 \rangle = \langle \xi^2 \rangle \]

\[\langle 0 | O_{\rho \mu \nu}^{+}(x) | \pi \rangle \sim \langle [x + (1 - x)]^2 \rangle = \langle 1^1 \rangle \]
Lattice operators for the 2nd moment

We estimate the following correlation functions

\[C_\rho(t, p) = a^3 \sum_x e^{-i px} \langle O_\rho(x, t) J_{\gamma_5}(0) \rangle \]

\[C^\pm_{\rho \mu \nu}(t, p) = a^3 \sum_x e^{-i px} \langle O^\pm_{\rho \mu \nu}(x, t) J_{\gamma_5}(0) \rangle \]

and construct ratios

\[R^\pm_{\rho \mu \nu, \sigma}(t, p) = \frac{C^\pm_{\rho \mu \nu}(t, p)}{C_\sigma(t, p)} \sim \rho_\mu \rho_\nu R^\pm \]

which exhibit plateaux and which we fit to extract the value \(R^\pm \).
Lattice operators for the 2^{nd} moment

Finally,

$$\langle \xi^2 \rangle_{\text{MS}} = \zeta_{11} R^- + \zeta_{12} R^+, $$

$$a_{2\text{MS}} = \frac{7}{12} \left[5\zeta_{11} R^- + (5\zeta_{12} - \zeta_{22}) R^+ \right]$$

where ζ_{ij} are renormalization constants estimated non-perturbatively in the RI’/SMOM scheme and matched to the MSbar scheme at NLO.
Pion distribution amplitude on the lattice

New momentum combination

\[\Theta(Y_{\mu}D_{\nu}D_{\rho}) \]

\[t \]

\[2.5 \quad 5.0 \quad 7.5 \quad 10.0 \quad 12.5 \quad 15.0 \quad 17.5 \quad 20.0 \]

\[0.7 \quad 0.8 \quad 0.9 \quad 1.0 \quad 1.1 \quad 1.2 \]

(412, 142)
(421, 214)
(124, 241)
New momentum combination

\[\langle 1^2(t) \rangle \]

\[\pi_{4ij}, \pi_{123} \]
\[K_{4ij}, K_{123} \]
Two trajectories lead to the physical point, a third trajectory has $m_I = m_5$.

Credit: W. Söldner, Univ. Regensburg
Coordinated Lattice Simulations collaboration

Credit: J. Simeth, Univ. Regensburg
Combined fit

We perform a combined fit to all data points (all lattice spacings and all pion/kaon masses along the three trajectories) with continuum ChPT formula (no chiral logs) supplemented with cutoff effects parametrization

\[
\langle \xi^2 \rangle_\pi = (1 + c_0 a + c_1 a\overline{M}^2 + c_2^\pi a\delta M^2) \langle \xi^2 \rangle_0 + \overline{A}\overline{M}^2 - 2\delta A\delta M^2,
\]

\[
\langle \xi^2 \rangle_K = (1 + c_0 a + c_1 a\overline{M}^2 + c_2^K a\delta M^2) \langle \xi^2 \rangle_0 + \overline{A}\overline{M}^2 + \delta A\delta M^2,
\]

with \(\overline{A}, \delta A \) being low energy constants and

\[
\overline{M}^2 = \frac{2m_K^2 + m_\pi^2}{3}, \quad \delta M^2 = m_K^2 - m_\pi^2.
\]

\(\Rightarrow \) 7 fit parameters
Extrapolation of $\langle 1^2 \rangle$: check

Figure: Old vs. new momentum combination
\(\langle \xi^2 \rangle \)
2nd moment of the pion distribution amplitude

\[\langle \xi^2 \rangle_{\text{ms}} = \text{phys.} \quad \beta = 3.4 \ a \approx 0.0854 \ \text{fm} \]

\[m_s = \text{phys.} \quad \beta = 3.46 \ a \approx 0.076 \ \text{fm} \]

\[m_s = \text{phys.} \quad \beta = 3.7 \ a \approx 0.05 \ \text{fm} \]

\[m_s = \text{phys.} \quad \beta = 3.85 \ a \approx 0.039 \ \text{fm} \]
2nd moment of the pion distribution amplitude

\[\langle \xi^2 \rangle \]

Symmetric, \(\beta = 3.4 \ a \approx 0.0854 \ \text{fm} \)

\[\langle \xi^2 \rangle \]

Symmetric, \(\beta = 3.46 \ a \approx 0.076 \ \text{fm} \)

\[\langle \xi^2 \rangle \]

Symmetric, \(\beta = 3.55 \ a \approx 0.0644 \ \text{fm} \)

\[\langle \xi^2 \rangle \]

Symmetric, \(\beta = 3.7 \ a \approx 0.05 \ \text{fm} \)

\[\langle \xi^2 \rangle \]

Symmetric, \(\beta = 3.85 \ a \approx 0.039 \ \text{fm} \)
Continuum extrapolation: preliminary results, systematics under investigation

In the continuum limit $a \to 0$ we obtain:

$\langle \xi^2 \rangle_\pi = 0.2289(68)$
$\langle \xi^2 \rangle_K = 0.2204(42)$
$\alpha_2^\pi = 0.0847(198)$
$\alpha_2^K = 0.0599(128)$
Conclusions

Pion distribution amplitude

Our preliminary results (statistical uncertainties only)

\[\langle \xi^2 \rangle_\pi = 0.2289(68) \text{ corresponding to } a_2^\pi = 0.085(20) \]

\[\langle \xi^2 \rangle_K = 0.2204(42) \text{ corresponding to } a_2^K = 0.060(13) \]

Compare with the previous value at finite lattice spacing and for \(N_f = 2 \):

\[\langle \xi^2 \rangle_\pi = 0.236 \pm 0.008, \text{ (Braun et al. '15).} \]

Full x dependence of the pion DA

In a separate project we are currently estimating non-perturbatively the position space DA (that carries information on the full x dependence)

⇒ Philipp Wein talk: Wednesday, 14:40, lecture hall 106

We acknowledge the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) of the University of Warsaw for computer time on Okeanos (grant No. GA67-12).