Exclusive Channel Study of the Muon HVP

Aaron S. Meyer (ameyer@quark.phy.bnl.gov)
in collaboration with:
Mattia Bruno, Taku Izubuchi, Christoph Lehner
for the RBC/UKQCD Collaboration

Brookhaven National Laboratory

July 27, 2018

36th International Symposium on Lattice Field Theory
The RBC & UKQCD collaborations

BNL and BNL/RBRC
Yasumichi Aoki (KEK)
Mattia Bruno
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Christoph Lehner
Meifeng Lin
Aaron Meyer
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni

University of Connecticut
Tom Blum
Dan Hoying (BNL)
Luchang Jin (RBRC)
Cheng Tu

Edinburgh University
Peter Boyle
Guido Cossu
Luigi Del Debbio
Tadeusz Janowski
Richard Kenway
Julia Kettle
Fionn O'haigan
Brian Pendleton
Antonin Portelli
Tobias Tsang
Azusa Yamaguchi

University of Liverpool
Nicolas Garron

MIT
David Murphy

Peking University
Xu Feng

University of Southampton
Jonathan Flynn
Vera Guelpers
James Harrison
Andreas Juettner
James Richings
Chris Sachrajda

Stony Brook University
Jun-Sik Yoo
Sergey Syritsyn (RBRC)

York University (Toronto)
Renwick Hudspith

Columbia University
Ziyuan Bai
Norman Christ
Duo Guo
Christopher Kelly
Bob Mawhinney
Masaaki Tomii
Jiun Tu
Bigeng Wang

UC Boulder
Oliver Witzel

KEK
Julien Frison
Introduction
 ▶ Motivation from Experiment
 ▶ Tensions in Experiment

Computation
 ▶ Lattice Parameters
 ▶ GEVP Study

Results
 ▶ Correlation Function Reconstruction
 ▶ (Improved) Bounding Method

Conclusions/Outlook
Introduction
Pieces of Muon $g - 2$ Theory Prediction

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Value $\times 10^{10}$</th>
<th>Uncertainty $\times 10^{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED</td>
<td>11 658 471.895</td>
<td>0.008</td>
</tr>
<tr>
<td>EW</td>
<td>15.4</td>
<td>0.1</td>
</tr>
<tr>
<td>HVP LO</td>
<td>692.5</td>
<td>2.7</td>
</tr>
<tr>
<td>HVP NLO</td>
<td>-9.84</td>
<td>0.06</td>
</tr>
<tr>
<td>HVP NNLO</td>
<td>1.24</td>
<td>0.01</td>
</tr>
<tr>
<td>Hadronic light-by-light</td>
<td>10.5</td>
<td>2.6</td>
</tr>
<tr>
<td>Total SM prediction</td>
<td>11 659 181.7</td>
<td>3.8</td>
</tr>
<tr>
<td>BNL E821 result</td>
<td>11 659 209.1</td>
<td>6.3</td>
</tr>
<tr>
<td>Fermilab E989 target</td>
<td></td>
<td>≈ 1.6</td>
</tr>
</tbody>
</table>

Experiment-Theory difference is $27.4(7.3) = 3.7\sigma$ tension!

[Blum et al., (2018)]
Tensions in Experiment

R-ratio data for $ee \rightarrow \pi\pi$ exclusive channel, $\sqrt{s} = 0.6 - 0.9$ GeV region
Tension between most precise measurements
Other measurements not precise enough to favor one over the other

Avoid tension by computing precise lattice-only estimate of a_{μ}^{HVP}
Use lattice QCD to inform experiment, resolve discrepancy

[Davier, KEK (2018)]
Interplay between R-ratio, Lattice

\[a_{\mu}^{\text{cont.}} = \int_0^\infty dt \ K(t) C^{\text{cont.}}(t) \]
\[a_{\mu}^{\text{latt.}} = \sum_t w_t C^{\text{latt.}}(t) \]
\[C^{\text{cont.}}(t) = \int_0^\infty d\sqrt{s} \ s \ R(s) \ e^{-\sqrt{s} t} \]
\[C^{\text{latt.}}(t) = \sum_n |\Omega| V_{\mu} |n\rangle |^2 e^{-E_n t} \]

\[w_t \text{ from Bernecker, H. Meyer: 1107.4388 [hep-lat]} \]

R-Ratio, Lattice precise in complimentary regions
Lattice uncertainty dominated by long-distance region
\[\implies \text{need to address long-distance region to reduce lattice uncertainty} \]

Precisely determine \(E_n \) and \(\langle \Omega | V_{\mu} |n\rangle \) from exclusive \(\pi\pi \) study
Use those to approximate \(C^{\text{latt.}}(t) \) for large \(t \)
Computation
Computed on 2 + 1 flavor Möbius Domain Wall Fermions for valance and sea, M_π at physical value on all ensembles

All results in this talk on one coarse ensemble:

- $a \approx 0.20 \text{ fm} \approx (1.015 \text{ GeV})^{-1}$,
- $24^3 \times 64 (4.8 \text{ fm})$

Extending program to three other ensembles:

- 2 ensembles on same volume - volume dependence (see C. Lehner’s talk)
- multiple lattice spacings - continuum extrapolation
Distillation

Phys.Rev.D 80, 054506 (0905.2160 [hep-lat])

Eigenvectors of (spin-diagonal) Laplacian operator used to construct projection matrices (\(M \to \infty\) gives identity)

\[
\mathcal{P}_{t;xy}^{ab} = \sum_{i=0}^{M-1} \langle x|i^a_t\rangle \langle i^b_t|y \rangle
\]

Inserting distillation projection matrices smears quarks in bilinear

\[
\sum_a \tilde{Q}^a(z) \Gamma Q^a(z) \to \sum_{xycab} \tilde{Q}^a(x) \mathcal{P}_{t;xz}^{ac} \Gamma \mathcal{P}_{t;zy}^{cb} Q^b(y)
\]

\[
= \sum_{xycab} \tilde{Q}^a(x) f^{ac}(x - z) \Gamma f^{cb}(z - y) Q^b(y)
\]

Propagators contracted with eigenvectors at source & sink creates “perambulator” objects

\[
M_{t,\beta\alpha}^{ii} = \sum_{xy} \sum_{ab} \langle j^b_t|y \rangle \left(D_{yx,\beta\alpha}^{ba} \right)^{-1} \langle x|i^a_0 \rangle
\]

Perambulators stitched together to form desired \(N\)-point correlation functions

\[\implies\] ideal for creating \(2\pi \to 2\pi\) correlation functions
Fit Procedure

Operators in $I = 1$ P-wave channel

Local vector current operator:

Local $O_0 = \sum_x \bar{\psi}(x)\gamma_\mu \psi(x)$, $\mu \in \{1, 2, 3\}$

Three 2π operators with $O_{1,2,3}$ given by $\vec{p}_\pi \in \frac{2\pi}{L} \times \{(1, 0, 0), (1, 1, 0), (1, 1, 1)\}$

$$O_n = \left| \sum_{xyz} \bar{\psi}(x)f(x-z)e^{-i\vec{p}_\pi \cdot \vec{z}}\gamma_5 f(z-y)\psi(y) \right|^2$$

Correlators arranged in a 4×4 symmetric matrix:

<table>
<thead>
<tr>
<th>\otimes</th>
<th>O_0</th>
<th>O_1</th>
<th>O_2</th>
<th>O_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_0</td>
<td>$C^{(2)}_\rho$</td>
<td>$C^{(3)}_\rho \rightarrow \pi \pi$</td>
<td>$C^{(3)}_\rho \rightarrow \pi \pi$</td>
<td>$C^{(3)}_\rho \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>O_1</td>
<td>$C^{(4)}_{\pi \pi \rightarrow \pi \pi}$</td>
</tr>
<tr>
<td>O_2</td>
<td>$C^{(4)}_{\pi \pi \rightarrow \pi \pi}$</td>
</tr>
<tr>
<td>O_3</td>
<td>$C^{(4)}_{\pi \pi \rightarrow \pi \pi}$</td>
</tr>
</tbody>
</table>

Extra operator with $\vec{p}_\pi = \frac{2\pi}{L} \times (2, 0, 0)$ to estimate excited state systematics

Generalized EigenValue Problem (GEVP) to estimate overlaps & energies

$$C(t) V = C(t + \delta t) V \Lambda(\delta t) ; \quad \Lambda_{nn}(\delta t) \sim e^{+E_n \delta t} , \quad V_{im} \propto \langle \Omega | O_i | m \rangle$$

Reconstruct exponential dependence of local vector correlation function

$$C^{latt.}_{ij}(t) = \sum_{n}^{N} \langle \Omega | O_i | n \rangle \langle n | O_j | \Omega \rangle e^{-E_n t}$$

In practice, only finite N necessary to model correlation function
Scatter points from solving GEVP at fixed δt

$$C(t) \ V = C(t + \delta t) \ V \ \Lambda(\delta t), \quad \Lambda_{nn}(\delta t) \sim e^{+E_n \delta t}$$

Black lines are from fit ansatz: $f_i(t) = E_i + \alpha e^{-(E_N-E_i)t}$

Overlaps picked to have approximately same contamination from excited states

Bands are extracted spectrum/overlaps ($= E_i$), with excited state systematics

Systematics estimated from difference between 4- and 5-operator GEVP basis.
Correlation Function Reconstruction

GEVP results to reconstruct long-distance behavior of local vector correlation function needed to compute connected HVP

Explicit reconstruction good estimate of correlation function at long-distance, missing excited states at short-distance

More states \(\implies\) better reconstruction, can replace \(C(t)\) at shorter distances
Improved Bounding Method

Use known results in spectrum to make a precise estimate of upper & lower bound on a^{HVP}_{μ}

$$\tilde{C}(t; t_{\text{max}}, E) = \begin{cases}
C(t) & t < t_{\text{max}} \\
C(t_{\text{max}}) e^{-E(t-t_{\text{max}})} & t \geq t_{\text{max}}
\end{cases}$$

Upper bound: $E = E_0$, lowest state in spectrum

Lower bound: $E = \log[\frac{C(t_{\text{max}})}{C(t_{\text{max}}+1)}]$

Good control over lower states in spectrum with exclusive reconstruction:

Replace $C(t) \rightarrow C(t) - \sum_{n}^{N} |c_n|^2 e^{-E_n t}$

\implies Long distance convergence now $\propto e^{-E_{N+1} t}$

\implies Smaller overall contribution from neglected states

Add back contribution from reconstruction after bounding correlator
Bounding Method

(See talk by C. Lehner)

No bounding method:
Bounding method $t_{\text{max}} = 2.1$ fm, no reconstruction:

$$a_{\mu}^{\text{HVP}} = 577(31)$$
$$a_{\mu}^{\text{HVP}} = 566.8(9.0)$$

Very large lattice spacing: $a^{-1} = 1.015$ GeV, finite volume effects
Could expect 10 – 20% systematic errors
Bounding Method

\[\sum_{t=0}^{T/2} w_t \hat{C}(t) \]

(See talk by C. Lehner)

PRELIMINARY

No bounding method:
Bounding method \(t_{\text{max}} = 2.1 \) fm, no reconstruction: \(a_{\mu}^{HVP} = 577(31) \)
Bounding method \(t_{\text{max}} = 1.7 \) fm, 1 state reconstruction: \(a_{\mu}^{HVP} = 566.8(9.0) \)

Bounding method \(t_{\text{max}} = 1.6 \) fm, 2 state reconstruction: \(a_{\mu}^{HVP} = 559.5(3.8) \)

Very large lattice spacing: \(a^{-1} = 1.015 \) GeV, finite volume effects
Could expect 10 – 20% systematic errors
Bounding Method

(See talk by C. Lehner)

No bounding method:
Bounding method $t_{\text{max}} = 2.1$ fm, no reconstruction:
Bounding method $t_{\text{max}} = 1.7$ fm, 1 state reconstruction:
Bounding method $t_{\text{max}} = 1.6$ fm, 2 state reconstruction:

Very large lattice spacing: $a^{-1} = 1.015$ GeV, finite volume effects
Could expect 10 – 20% systematic errors

$$a_{\mu}^{\text{HVP}} = 577(31)$$
$$a_{\mu}^{\text{HVP}} = 566.8(9.0)$$
$$a_{\mu}^{\text{HVP}} = 561.5(4.5)$$
$$a_{\mu}^{\text{HVP}} = 559.5(3.8)$$
Outlook and Conclusions
Summary

- $g - 2$ is an interesting and exciting topic to work on!
- Tensions in experimental $ee \rightarrow \pi \pi$ data make independent study of exclusive channels valuable
- Lattice QCD is a first principles method capable of accessing necessary matrix elements
- Additional studies using correlated fits, additional ensembles in progress
- Study of exclusive channels able to significantly reduce statistical uncertainty on an all-lattice computation of muon HVP
 \[\Rightarrow \text{expect lattice-only calculation with precision comparable to R-ratio by 2020} \]
- Part of ongoing lattice study to address all lattice systematics in HVP computation
Thanks

Computing time support from many sources:

▶ ANL
▶ BNL
▶ Oak Forest
▶ Hokusai
▶ USQCD
▶ XSEDE

Lots of data to analyze, lots of work ahead of us!

Thank you for your attention!
Backup
Full program of computations to reduce uncertainties:

Reduce statistical uncertainties on light connected contribution

Compute QED contribution

Improve lattice spacing determination

Finite volume and continuum extrapolation study
Distillation Smearing Visualization

Free-field Laplacian in 2-dimensions, 24^2 volume
More evecs, better ability to localize

9 evecs (57 equiv), $\sum_i p_i^2 \leq 2$

13 evecs (99 equiv), $\sum_i p_i^2 \leq 4$

21 evecs (171 equiv), $\sum_i p_i^2 \leq 5$