Determination of nucleon sigma terms II

Christian Hoelbling
Bergische Universität Wuppertal
Lattice 2018, MSU East Lansing
July 25th 2018

Budapest-Marseille-Wuppertal collaboration
Scalar quark content of the nucleon

Nucleon mass:

\[M_N = \langle N | T^\mu_\mu | N \rangle - \langle 0 | T^\mu_\mu | 0 \rangle \]

Quark contribution to energy-momentum tensor (lattice regularization):

\[T^\mu_\mu = \sum_q m_q \bar{q}q + H_U \]

Sigma terms give quark mass contribution towards nucleon mass

\[\sigma_q = m_q \langle N | \bar{q}q | N \rangle - m_q \langle 0 | \bar{q}q | 0 \rangle \]

Also effective scalar couplings to quarks in nucleons: relevant for DM searches etc.
Feynman-Hellmann theorem

Theorem linking 2-point and 3-point functions

Requirements for lattice theory:
- Transfer matrix on $T = e^{-\bar{\psi}M(U)\psi}$ on gauge config U exists
- Mass term of the form $M_{x,y}(U) = m\delta_{x,y}$

Easy to show that

$$\frac{\partial M_N}{\partial m_q} = m_q\langle N|\bar{q}q|N\rangle - m_q\langle 0|\bar{q}q|0\rangle = \sigma_q$$

Strategy:

$$\frac{\partial M_N}{\partial m_q} = \frac{\partial M_N}{\partial M_P^2} \frac{\partial M_P^2}{\partial m_q}$$

- $\partial M_P^2/\partial m_q$ with physical point staggered data \(\rightarrow\) Lukas Varnhorst
- $\partial M_N/\partial M_P^2$ with 3-HEX clover: this talk
Our Ensembles

- 3-HEX $N_f=4\times1+\text{QED}$
- 2-HEX $N_f=2+1$
- 6-stout $N_f=2+1$

Christian Hoelbling (Wuppertal)
Nucleon quark content

\[(2M_K^2 - M_\pi^2)_{\frac{1}{2}} [\text{MeV}]\]

\[\beta = 3.2\]
\[\beta = 3.3\]
\[\beta = 3.4\]
\[\beta = 3.5\]
Excited state contributions

- Multiple fit ranges
- Per range, keep excited state error constant relative to statistical
 (Assume $\Delta M = 500\text{MeV}$)
- Crosschecked for consistency with excited state fits
Check for random distribution of ensemble fit qualities

KS test of quality of fit cdf

4 plateaux ranges in final analysis
Analysis strategy

Problem:
- Determine \(M_P^2 = M_\pi^2, M_{K\chi}^2 (= M_K^2 - M_\pi^2 / 2) \) dependence of \(M_N \) at physical point

Method:
- Fit \(M_N(M_\pi, M_{K\chi}, L, a) \)
 - Added dedicated FV configs from QCD+QCD ensembles (neutral mesons and baryons extracted)
- Set scale with \(M_N \)
 - Crosscheck with \(M_\Omega \) scale setting
 - No discretization terms at physical point \(\phi \):
 - either \(\alpha a \) or \(a^2 \) times \((M_\pi^2 - (M_\pi^\phi)^2) \) and \((M_{K\chi}^2 - (M_{K\chi}^\phi)^2) \)
- Estimate systematic error
Nucleon fit

- $M_\pi \ < \ \{360, 420\}$
- Various Polynomial, Padé and χPT ansätze
- Spread into systematic error
- $M_N \propto M_0 + cM_\pi$
- bad Q and wrong M_Ω
Nucleon fit

\[M_N \propto M_0 + cM_\pi \]

\[M_\pi \text{ MeV} < \{360, 420\} \]

Various Polynomial, Padé and \(\chi \)PT ansätze

Spread into systematic error

\[M_N \propto M_0 + cM_\pi \]
bad \(Q \) and wrong \(M_\Omega \)
We fit leading effects
\[\frac{M_X(L) - M_X}{M_X} = c M_\pi^{1/2} L^{-3/2} e^{-M_\pi L} \]

Compatible with \(\chi PT\) expectation: \(c = 36(12)(5)\text{GeV}^{-2}\)

(Colangelo et. al., 2010)
One conservative strategy for systematics: (BMWc 2008, BMWc 2014)

- Identify all higher order effects you have to neglect
- For each of them:
 - Repeat the entire analysis treating this one effect differently
 - Add the spread of results to systematics

Important:
- Do not do suboptimal analyses
- Do not double-count analyses

Error sources considered:
- Plateaux range (Excited states)
- $M_\pi, M_{K\chi}$ interpolations/extrapolations
- Cuts on maximal M_π
- Continuum extrapolation
Systematic error

- Total 6144 analyses:
 - 64 variations of matrix J:
 - 4 m_{ud} continuum terms
 - 4 m_s continuum terms
 - 2 plateaux ranges
 - 96 variations of $\sigma_{\pi,K}\chi$
 - 2 $M_{K\chi}$ fit forms
 - 2 M_π fit forms
 - 2 M_π cuts
 - 3 continuum terms
 - 4 plateaux ranges
- Other variations crosschecked: no further relevant terms found
Systematic error

- Total 6144 analyses
- Difference: higher order effects
- Draw cdf of results
- Different weights possible
- Crosscheck agreement
From the effective Hamiltonian

\[H = H_{\text{iso}} + \frac{\delta m}{2} \int d^3x (\bar{d}d - \bar{u}u) \]

we obtain (with \(\delta m = m_d - m_u \) and normalization \(\langle N|N\rangle = 2M_N \))

\[\Delta_{QCD}M_N = \frac{\delta m}{2M_p} \langle p|\bar{u}u - \bar{d}d|p\rangle \]

which, together with

\[\sigma_{u/d}^p = \left(\frac{1}{2} \mp \frac{\delta m}{4m_{ud}} \right) \sigma_{ud}^p + \left(\frac{1}{4} \pm \frac{m_{ud}}{2\delta m} \right) \frac{\delta m}{2M_p} \langle p|\bar{d}d - \bar{u}u|p\rangle \]

gives \(r = m_u/m_d \)

\[\sigma_{u}^p/n = \left(\frac{r}{1 + r} \right) \sigma_{ud}^N \pm \frac{1}{2} \left(\frac{r}{1 - r} \right) \Delta_{QCD}M_N + O(\delta m^2, m_{ud}\delta m) \]

\[\sigma_{d}^p/n = \left(\frac{1}{1 + r} \right) \sigma_{ud}^N \pm \frac{1}{2} \left(\frac{1}{1 - r} \right) \Delta_{QCD}M_N + O(\delta m^2, m_{ud}\delta m) \]
Preliminary results

Mesonic σ terms:

\[
\sigma^N_\pi = 42.0(1.3)(1.4)\text{MeV} \quad \quad \sigma^N_K = 50.9(3.3)(2.8)\text{MeV}
\]

Nucleon mass in $SU(2)$ and $SU(3)$ chiral limit:

\[
M^{SU(2)}_{N\chi} = 895.7(1.4)(1.9)\text{MeV} \quad \quad M^{SU(3)}_{N\chi} = 848.1(3.5)(3.3)\text{MeV}
\]

Quark σ terms with staggered mixing matrix:

\[
\sigma^N_{ud} = 37.3(3.0)(4.2)\text{MeV} \quad \quad \sigma^N_s = 54.2(4.3)(3.1)\text{MeV}
\]

With $\Delta_{QCD}M_N = 2.52(17)(24)\text{MeV}$ from (BMWc 2014)

\[
\sigma^p_u = 13.4(1.0)(1.4)\text{MeV} \quad \quad \sigma^p_d = 22.7(2.1)(2.8)\text{MeV}
\]

\[
\sigma^n_u = 11.0(1.0)(1.4)\text{MeV} \quad \quad \sigma^n_d = 27.6(2.0)(2.8)\text{MeV}
\]
PRELIMINARY results

\[\sigma_{Nq} \text{[Mev]} \]

- \text{proton}
- \text{neutron}

\text{quark q: u, d, s}
COMPARISON

Compatible with old results Tension with Hoferichter et. al. 15,17

\[\sigma_{ud}^N \text{ [MeV]} \]

\[\sigma_{s}^N \text{ [MeV]} \]