Direct lattice-QCD calculation of pion valence quark distribution

Jianhui Zhang
University of Regensburg

Lattice 2018, 24 July, 2018,
Michigan State University, East Lansing
Direct lattice-QCD calculation of pion valence quark distribution

Jianhui Zhang
University of Regensburg

Direct lattice-QCD calculation of pion valence quark distribution

Jianhui Zhang
University of Regensburg

Collaborators: J.-W. Chen, L. Jin, H.-W. Lin, Y.-S. Liu,
A. Schäfer, Y. Yang and Y. Zhao

Lattice parton physics project (LP³)
Contents

- Introduction
- Pion parton structure from first principles
- Results on pion valence quark distribution
- Summary and outlook
Introduction

- Pion plays a fundamental role in QCD
 - Lightest quark-antiquark bound state
 - Goldstone boson associated with dynamical chiral symmetry breaking
 - Explains the flavor asymmetry in the nucleon quark sea

- Its parton structure mainly from Drell-Yan data on πN scattering
 - Soft gluon resummation renders q_v^π softer at large $x, \sim (1 - x)^2$ [Aicher, Schäfer and Vogelsang, PRL 10']

 - Consistent with perturbative QCD [Farrar and Jackson, PRL 79', Berger and Brodsky, PRL 79'] and Dyson-Schwinger
 - Equation [Hecht, Roberts and Schmidt, PRC 01']
Introduction

- Pion plays a fundamental role in QCD
 - Lightest quark-antiquark bound state
 - Goldstone boson associated with dynamical chiral symmetry breaking
 - Explains the flavor asymmetry in the nucleon quark sea

- Its parton structure mainly from Drell-Yan data on πN scattering
 - Soft gluon resummation renders q^π_v softer at large x, $\sim (1 - x)^2$ [Aicher, Schäfer and Vogelsang, PRL 10’]

- Consistent with perturbative QCD [Farrar and Jackson, PRL 79’, Berger and Brodsky, PRL 79’] and Dyson-Schwinger
 - Equation [Hecht, Roberts and Schmidt, PRC 01’]

- Quark models favor a linear dependence $(1 - x)$ at large x
Introduction

- Pion plays a fundamental role in QCD
 - Lightest quark-antiquark bound state
 - Goldstone boson associated with dynamical chiral symmetry breaking
 - Explains the flavor asymmetry in the nucleon quark sea

- Its parton structure mainly from Drell-Yan data on πN scattering
 - Lattice QCD is only able to access the first few moments of pion PDF
 [Detmold, Melnitchouk, Thomas, PRD 03']
Introduction

- Pion plays a fundamental role in QCD
 - Lightest quark-antiquark bound state
 - Goldstone boson associated with dynamical chiral symmetry breaking
 - Explains the flavor asymmetry in the nucleon quark sea

- Its parton structure mainly from Drell-Yan data on πN scattering
 - Lattice QCD is only able to access the first few moments of pion PDF
 [Detmold, Melnitchouk, Thomas, PRD 03']

- It can shed more light on pion parton structure if its computational potential can be extended beyond that
Introduction

- Pion plays a fundamental role in QCD
 - Lightest quark-antiquark bound state
 - Goldstone boson associated with dynamical chiral symmetry breaking
 - Explains the flavor asymmetry in the nucleon quark sea

- Its parton structure mainly from Drell-Yan data on πN scattering
 - Lattice QCD is only able to access the first few moments of pion PDF [Detmold, Melnitchouk, Thomas, PRD 03’]
 - It can shed more light on pion parton structure if its computational potential can be extended beyond that

Large momentum effective theory (LaMET)

- Parton picture arises in high-energy collisions where hadrons/probe move nearly at the speed of light, or with infinite momentum
Large momentum effective theory (LaMET)

- Parton picture arises in high-energy collisions where hadrons/probe move nearly at the speed of light, or with infinite momentum
- Parton physics usually formulated in terms of light-cone quantization [Dirac]
 - light-cone coordinates $\xi^{\pm} = (t \pm z)/\sqrt{2}$
 - Example: [Collins and Soper, NPB 82']

$$q(x, \mu^2) = \int \frac{d\xi^-}{4\pi} e^{-ix\cdot P^+} \langle P|\overline{\psi}(\xi^-)\gamma^+ \exp \left(-ig \int_{0}^{\xi^-} d\eta^- A^+(\eta^-) \right) \psi(0)|P\rangle$$
Large momentum effective theory (LaMET)

- Parton picture arises in high-energy collisions where hadrons/probe move nearly at the speed of light, or with infinite momentum.
- Parton physics usually formulated in terms of light-cone quantization [Dirac]
 - light-cone coordinates $\xi^{\pm} = (t \pm z)/\sqrt{2}$
 - Example: [Collins and Soper, NPB 82’]

$$q(x, \mu^2) = \int \frac{d\xi^\pm}{4\pi} e^{-ix\xi^P^+} \langle P|\bar{\psi}(\xi^-)\gamma^+ \exp \left(-ig \int_0^{\xi^-} d\eta^- A^+ (\eta^-) \right)|\psi(0)|P \rangle$$

- However, it was originally introduced by Feynman as the infinite momentum limit of frame-dependent quantities
 $$q(x) = \lim_{P_z \to \infty} \tilde{q}(x, P_z)$$
Parton picture arises in high-energy collisions where hadrons/probe move nearly at the speed of light, or with infinite momentum.

Parton physics usually formulated in terms of light-cone quantization [Dirac]

- light-cone coordinates $\xi^\pm = (t \pm z)/\sqrt{2}$
- Example: [Collins and Soper, NPB 82']

$$q(x, \mu^2) = \int \frac{d\xi^-}{4\pi} e^{-ix\xi^-P^+} \langle P|\bar{\psi}(\xi^-)\gamma^+ \exp \left(-ig \int_0^{\xi^-} d\eta^- A^+(\eta^-) \right) \psi(0)|P\rangle$$

However, it was originally introduced by Feynman as the infinite momentum limit of frame-dependent quantities

$$q(x) = \lim_{P_z \to \infty} \tilde{q}(x, P_z)$$

- Appropriately chosen $\tilde{q}(x, P_z)$ can be calculated on the Euclidean lattice
- A finite but large P_z already offers a good approximation, where (leading) frame-dependence can be removed through a factorization procedure
Pion PDF from LaMET

- **Pion PDF**

 \[q_f^\pi (x) = \int \frac{d\lambda}{4\pi} e^{-ix\lambda \cdot P} \langle \pi(P) | \overline{\psi}_f (\lambda n) \gamma^5 \Gamma (\lambda n, 0) \psi_f (0) | \pi(P) \rangle \]

 \(P^\mu = (p_0, 0, 0, p_z), n^\mu = (1, 0, 0, -1) / \sqrt{2} \)

- **Pion quasi-PDF** [Ji, PRL 13']

 \[\tilde{q}_f^\pi (x) = \int \frac{d\lambda}{4\pi} e^{-ix\lambda \cdot \tilde{n}} \langle \pi(P) | \overline{\psi}_f (\lambda \tilde{n}) \gamma^5 \Gamma (\lambda \tilde{n}, 0) \psi_f (0) | \pi(P) \rangle \]

 \(\tilde{n}^\mu = (0, 0, 0, -1), \tilde{\gamma} = \gamma^t \) can also be replaced by \(\gamma^t \)

- **Nonperturbative renormalization of quasi-PDF** [Ji, JHZ and Zhao, PRL 18', Ishikawa, Ma, Qiu and Yoshida, PRD 17', Green, Jansen and Steffens, 17']

 \[\tilde{h}_R (\lambda \tilde{n}) = Z_1 Z_2 e^{\delta m \lambda} \tilde{h} (\lambda \tilde{n}) \]

 \(\delta m \) can be calculated from Wilson loop corresponding to static quark-antiquark potential
Pion PDF from LaMET

- **Pion PDF**

\[
q_f^\pi(x) = \int \frac{d\lambda}{4\pi} e^{-ix\lambda n \cdot P} \langle \pi(P) | \bar{\psi}_f(\lambda n) \gamma^\mu \Gamma(\lambda n, 0) \psi_f(0) | \pi(P) \rangle
\]

- \(P^\mu = (P_0, 0, 0, P_z), n^\mu = (1,0,0,-1)/\sqrt{2} \)

- **Pion quasi-PDF** [Ji, PRL 13’]

\[
\tilde{q}_f^\pi(x) = \int \frac{d\lambda}{4\pi} e^{-ix\lambda \tilde{n} \cdot P} \langle \pi(P) | \bar{\psi}_f(\lambda \tilde{n}) \gamma^\mu \Gamma(\lambda \tilde{n}, 0) \psi_f(0) | \pi(P) \rangle
\]

- \(\tilde{n}^\mu = (0,0,0,-1), \bar{\psi} = \gamma^\mu \) can also be replaced by \(\gamma^t \)

- **Nonperturbative renormalization of quasi-PDF** [Ji, JHZ and Zhao, PRL 18’, Ishikawa, Ma, Qiu and Yoshida, PRD 17’, Green, Jansen and Steffens, 17’]

\[
\tilde{h}_R(\lambda \tilde{n}) = Z^{-1}(\lambda \tilde{n}, p_z^R, 1/a, \mu_R) \tilde{h}(\lambda \tilde{n})
\]

- **RI/MOM** [Stewart and Zhao, PRD 17’, Alexandrou et al, NPB 17’, LP3, PRD 17’]

\[
Z(\lambda \tilde{n}, p_z^R, 1/a, \mu_R) = \frac{\text{Tr}[\bar{\psi} \sum_s \langle p, s | \bar{\psi}_f(\lambda \tilde{n}) \gamma^\mu \Gamma(\lambda \tilde{n}, 0) \psi_f(0) | p, s \rangle]}{\text{Tr}[\bar{\psi} \sum_s \langle p, s | \bar{\psi}_f(\lambda \tilde{n}) \gamma^\mu \Gamma(\lambda \tilde{n}, 0) \psi_f(0) | p, s \rangle_{\text{tree}}]} \bigg|_{p^2 = -\mu_R^2, p_z = p_z^R}
\]
Pion PDF from LaMET

- **Pion PDF**

\[
q_f^\pi (x) = \int \frac{d\lambda}{4\pi} e^{-ix\lambda \cdot P} \langle \pi(P) | \bar{\psi}_f (\lambda n) \gamma \Gamma (\lambda n, 0) \psi_f (0) | \pi(P) \rangle
\]

- \(P^\mu = (P_0, 0, 0, P_z), n^\mu = (1, 0, 0, -1)/\sqrt{2} \)

- **Pion quasi-PDF [Ji, PRL 13’]**

\[
\tilde{q}_f^\pi (x) = \int \frac{d\lambda}{4\pi} e^{-ix\lambda \tilde{n} \cdot P} \langle \pi(P) | \bar{\psi}_f (\lambda \tilde{n}) \gamma \Gamma (\lambda \tilde{n}, 0) \psi_f (0) | \pi(P) \rangle
\]

- \(\tilde{n}^\mu = (0, 0, 0, -1), \tilde{\gamma}_t = \gamma^t \) can also be replaced by \(\gamma^t \)

- **Factorization [Ji, PRL 13’, Xiong, Ji, JHZ and Zhao, PRD 14’, Stewart and Zhao, PRD 18’, Ma and Qiu, 14’ & PRL 18’]**

\[
\tilde{q}_{v,R}^\pi (x, \tilde{n} \cdot P, \tilde{\mu}) = \int_0^1 \frac{dy}{y} C \left(\frac{x}{y}, \frac{\tilde{\mu}}{\mu}, \frac{\mu}{y \tilde{n} \cdot P} \right) q_{v,R}^\pi (y, \mu) + \mathcal{O} \left(\frac{m_\pi^2}{(\tilde{n} \cdot P)^2}, \frac{\Lambda_{QCD}^2}{(\tilde{n} \cdot P)^2} \right)
\]

- \(q_{u,v}^\pi (x) = q_{u}^\pi (x) - q_{d}^\pi (x) = q_{u}^\pi (x) - q_{d}^\pi (x) \) due to isospin symmetry
Other proposals

- They all share the same property of computing correlations at spacelike separations

- Current-current correlation functions
 - [Liu and Dong, PRL 94’]
 - [Detmold and Lin, PRD 06’]
 - [Braun and Müller, EPJC 08’]
 - [Davoudi and Savage, PRD 12’]
 - [Chambers et al., PRL 17’]

- Lattice cross sections
 - [Ma and Qiu, 14’ & PRL 17’]

- Ioffe-time /pseudo-distribution
 - [Radyushkin, PRD 17’]
Results on pion valence quark PDF

- Renormalized matrix element

LP3, 1804.01483,
\(m_\pi \approx 310 \text{ MeV}, a = 0.12 \text{ fm}, L \approx 3 \text{ fm} \)
Results on pion valence quark PDF

- One-loop matching effect

- Matching has a sizeable effect, and cannot be ignored, as was done in [Xu, Chang, Roberts and Zong, PRD 18'], where they observed that for $P_z \geq 2$ GeV, by further increasing pion momentum the quasi-PDF shrinks to the physical region very slowly.

LP3, 1804.01483, $m_\pi \approx 310$ MeV, $a = 0.12$ fm, $L \approx 3$ fm
Results on pion valence quark PDF

- Pion momentum dependence

LP3, 1804.01483,

\[m_\pi \approx 310 \text{ MeV}, a = 0.12 \text{ fm}, L \approx 3 \text{ fm} \]
Results on pion valence quark PDF

- Final result

LP3, 1804.01483, $m_\pi \approx 310$ MeV, $a = 0.12$ fm, $L \approx 3$ fm
Summary and outlook

- **Large momentum effective theory** opens a new door for *ab initio* studies of hadron structure

- It has been applied to computing dynamical properties of hadrons, like nucleon PDFs, meson PDFs & DAs, and yields encouraging results

- Systematic studies of uncertainties or artifacts are required:
 - Physical pion mass
 - Continuum extrapolation
 - Finite volume effects
 - Discretization effects
 - Higher-order matching
Backup Slides