Kaon Distribution Amplitude from Lattice QCD

Rui Zhang

LP^3 Collaboration

ITP, CAS

Michigan State University

The 36th Annual International Symposium on Lattice Field Theory
East Lansing, MI, USA 07/22-28, 2018
Overview

1. Parton Distribution Amplitude
2. Lattice Set Up
3. Bare Results
4. Improved Results
5. Summary
Meson DA in exclusive processes

Meson lightcone distribution amplitudes are important inputs in exclusive processes, such as $B \rightarrow \pi K$, at large momentum transfer $Q^2 \gg \Lambda_{QCD}$, where the scattering amplitude can be factorized into hard parts and soft parts:

$$
< \pi K | Q_i | B > = F_0^{B \rightarrow \pi} T_{K,i}^l f_K \Phi_K + F_0^{B \rightarrow K} T_{\pi,i}^l f_\pi \Phi_\pi + T_{i}^{ll} f_B \Phi_B f_K \Phi_K f_\pi \Phi_\pi
$$
quasi-DA

Instead of calculating the PDA directly, we are actually calculating the quasi-DA in LaMET [Ji, 2013]

\[\tilde{\phi}_M(x, \mu_R, P_z) = \frac{i}{f_M} \int \frac{dz}{2\pi} e^{-i(x-1)P_z z} \langle M(P)|\bar{\psi}(0)\gamma^z \gamma_5 \Gamma(0, z) \lambda^a \psi(z)|0\rangle \]

after a matching procedure [Ji et al., 2015]

\[\tilde{\phi}_M(x, \mu_R, P_z) = \int_0^1 dy \ Z_\phi(x, y, \mu, \mu_R, P_z) \phi_M(y, \mu) + O\left(\frac{\Lambda_{QCD}^2}{P_z^2}, \frac{m_M^2}{P_z^2} \right), \]

where the matching kernel \(Z_\phi \) can be expanded to one-loop level as:

\[Z_\phi(x, y) = \delta(x - y) + \frac{\alpha_s}{2\pi} (Z^{(1)}_\phi(x, y) - \delta(x - y) \int_{-\infty}^{\infty} dx' Z^{(1)}_\phi(x', y)) + O(\alpha_s^2) \]
The observable we compute on lattice is the correlator

\[\tilde{C}(z, P_z, \tau) = \left\langle \int d^3x e^{i \vec{P} \cdot x} \bar{\psi}(\vec{x}, \tau) \gamma^z \gamma_5 \Gamma(\vec{x}, \vec{x} + z) \lambda^a \psi(\vec{x} + z, \tau) \psi^S(0, 0) \gamma_5 \lambda^a \psi^S(0, 0) \right\rangle, \]

where we use the gauge invariant Gaussian smeared source

\[\psi^S(x) = \int d^3y e^{-\frac{|x-y|^2}{2\sigma^2} - i \vec{k} \cdot (\vec{x} - \vec{y})} U(x, y) \psi(y), \]

which can be related to the matrix element

\[\tilde{h}_M(z, P_z) = \langle M(P) | \bar{\psi}(0) \gamma^z \gamma_5 \lambda^a \Gamma(0, z) \psi(z) | 0 \rangle \]

by extracting the ground-state coefficient of the correlator

\[\tilde{C}(z, P_z, \tau) = \frac{Z_{src} \tilde{h}_M(z, P_z)}{2E_0} e^{-E_0 \tau} + \sum_{i>0} B_i(z, P_z) e^{-E_i \tau} \]
The two-point correlators are obtained by running the chroma program with following parameters:

- Lattice spacing $a = 0.12\, fm$
- $24^3 \times 64$ lattice with $2 + 1 + 1$ flavors of HISQ
- Pion mass $310\, MeV$
- Smeared sources and sinks with smearing mom $k = 0.73P_z$
- Meson momentum $P_z = (4\pi/6\pi/8\pi)/L = (0.77/1.15/1.53)\, GeV$
- 4 source locations
- 967 hypercubic smearing configurations
Matrix Elements

We fit the resulting correlators to the sum of first two terms

$$\tilde{C}(z, P_z, \tau) = A(z, P_z)e^{-E_0\tau} + B(z, P_z)e^{-E_1\tau}$$

Average $\chi^2 = 1.3$.

Normalize the coefficient to obtain

$$h_M(zP_z, P_z) = \frac{\tilde{h}_M(z, P_z)}{P_z f_M} = \frac{A(z, P_z)}{A(0, P_z)}$$

so that $h(0, P_z) = 1$.

We also checked the 3-term fit results. They’re consistent with our 2-term fit, thus we can safely exclude the excited-state effect here.
Dispersion Relation

The dispersion relations for π, K and η_s (with the connected diagram contribution only). The lines are $E^2(P_z) = m^2 + \hat{P}_z^2$, with $\hat{P}_z = 2/a \sin(P_z a/2)$, which are satisfied within two sigmas of the statistical uncertainties.
Bare quasi-DA ME

The kaon bare quasi-DA matrix elements. The dashed lines are the asymptotic forms. The bare results for pion and η_s are quite similar to the kaon’s.
Renormalization

The gauge-invariant quark Wilson line operator contributes to power divergences. It can be renormalized multiplicatively in the coordinate space:

\[\tilde{O}_r(z) = \bar{\psi}(z) \Gamma W(z, 0) \psi(0) = Z_\psi, Z e^{-\delta m |z|} (\bar{\psi}(z) \Gamma W(z, 0) \psi(0))^R \]

[Ji et al., 2017; Green et al., 2017; Ishikawa et al., 2017] where \(\delta m \) captures the linear power divergence, and \(Z \) is a logarithmic renormalization constant. The power divergence has to be nonperturbatively renormalized.
The δm can be determined by computing the $q - \bar{q}$ static potential $V(r) = \frac{c_{-1}}{r} + c_0 + c_1 r$

where $c_0 = \frac{c_{0,1}}{a} + c_{0,2}$, $\delta m = -\frac{c_{0,1}}{2a} = 0.154(2)/a = 225(3) \text{MeV}$. The improved quasi-DA is [Zhang et al., 2017]

$$\tilde{\phi}_M^{\text{imp}}(x, P_z) = \int_{-\infty}^{\infty} \frac{dz}{2\pi} e^{-i(x-1)zP_z + \delta m|z|} P_z h_M(z, P_z).$$
Matching and mass corrections

Final DAs are obtained by applying the one-loop matching kernel

\[
\phi_{M}^{\text{imp,match}}(x, P_z) \approx \phi_{M}^{\text{imp}}(x, P_z) - \frac{\alpha_s}{2\pi} \int_{-\infty}^{\infty} dy \left[Z_{\phi}^{(1)}(x, y) \phi_{M}^{\text{imp}}(y, P_z) - Z_{\phi}^{(1)}(y, x) \phi_{M}^{\text{imp}}(x, P_z) \right]
\]

and then the mass corrections to the improved DAs. The dashed line is the asymptotic form, the green band is DA without mass correction.

![Graph showing the comparison of different DAs](image)

\[P_z = 1.53\,\text{GeV} \]
Improved kaon DA

We then obtain the kaon distribution amplitudes for $P_z = (0.77/1.15/1.53) \text{GeV}$, with statistical errors only. The purple dashed line is the asymptotic form.
Improved pion DA

the pion distribution amplitudes for $P_z = (0.77/1.15/1.53)$ GeV, with statistical errors only. The purple dashed line is the asymptotic form. The η_s result is similar, with smaller errors.
SU(3) relations

It was shown in ChPT that the DAs satisfied the SU(3) relation

\[
\phi_{K^+}(x, \mu) - \phi_{K^-}(x, \mu) = \phi_{K^0}(x, \mu) - \phi_{\bar{K}^0}(x, \mu) \propto m_s - m_{u/d},
\]

\[
\phi_{\pi}(x, \mu) + 3\phi_{\eta}(x, \mu) - 2\phi_{K^+}(x, \mu) - 2\phi_{K^-}(x, \mu) = \mathcal{O}(m^2_q),
\]

[Chen and Stewart, 2004] where the \(\phi_\eta\) can be obtained by

\[
\phi_\eta = (2\phi_{\eta s} + \phi_\pi)/3.
\]

Thus we can compare the two magnitudes

\[
\delta_{SU(3),1} = (\phi_{K^-} - \phi_{K^+})/2 = \mathcal{O}(m_q),
\]

\[
\delta_{SU(3),2} = (\phi_\pi + \phi_{\eta s} - \phi_{K^+} - \phi_{K^-})/4 = \mathcal{O}(m^2_q).
\]
SU(3) relations

\[\frac{1}{2} \left(\phi_K - \phi_K^+ \right) \]

\[(3 \phi_{\eta} + \phi_{\pi}^+ - 2 \phi_K^+ - 2 \phi_K^-) \]
Summary

- We compute the quasi-DA of pion, kaon and η_s on lattice;
- Applied the δm counterterm renormalization, one loop matching kernel and mass corrections;
- Supported the $SU(3)$ relation predicted by ChPT.
- Future study: smaller lattice spacing, larger volume, physical pion mass.
The End
- In an OPE the leading order Wilson coefficient has an ambiguity from perturbation which requires higher order power corrections to cancel it.

- Our renormalization is done non-perturbatively, so there is no renormalon ambiguity.

- The perturbative matching could have renormalon ambiguity, but its size is the same order as the (twist-4) power correction.
disconnected diagrams for η_s

- The disconnected diagram is $O((m_s - \bar{m})^2)$ suppressed because there are two fermion loops.
- The error caused by the different values of ground-state energy E_0 is reduced when P_z increases, and is negligible at our momentum.
- The η_0 contribution is suppressed by a mixing factor $\sin\theta \sim 0.08$ times a factor of $(m_s - \bar{m})$