Neutron Detection

From MeV to neV energies

Zhehui Wang ("Jeph")

Los Alamos National Laboratory

EDIT 2018, Fermilab

Fermi & neutron detection

On Dec. 2, 1942, Fermi & his team achieved sustained chain reaction, and the first fission reactor. Key elements: fuel, neutron moderator, control rod, <u>neutron detector</u>, and radioactivity detector.

UNCLASSIFIED

Z. Wang Slide 2

What is a neutron?

Standard Model of Elementary Particles

UNCLASSIFIED

Z. Wang Slide 3

Physics beyond the standard model : Neutron approach

- Neutron β -decay
- Neutron EDM
- Neutron lifetime
- Matter-antimatter
- Dark matter

. . .

UNCLASSIFIED

Neutron detectors: illuminating the neutron world

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Neutron sources & detectors : mutually dependent

Outline

- LANSCE neutron source
- ¹⁰B Detectors for ³He replacement
- Ultracold neutron detectors and sciences
- Future perspectives

UNCLASSIFIED

Los Alamos Neutron Science Center (LANSCE)

UNCLASSIFIED

Z. Wang Slide 8

Evolution of neutron source

Introduction to LANSCE (a neutron source)

¹⁰B Detectors for ³He replacement

- Ultracold neutron detectors and sciences
- Future perspectives

UNCLASSIFIED

Fermi's neutron detector

PHYSICAL REVIEW

VOLUME 72, NUMBER 3

AUGUST 1, 1947

A Thermal Neutron Velocity Selector and Its Application to the Measurement of the Cross Section of Boron

E. FERMI, J. MARSHALL, AND L. MARSHALL Argonne National Laboratory,* University of Chicago, Chicago, ** Illinois (Received April 25, 1947)

In all cases the detector was a proportional counter filled with BF₃ gas. By the use of cad-

UNCLASSIFIED

Z. Wang Slide 11

How does it work?

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

¹⁰B vs ³He

- Inert
- Non-toxic
- Gaseous state
- (Rare)

³He shortage

started in 1950s \rightarrow buildup of tritium (³H) for H-bombs

> Size of the stockpile rough estimate

Disbursements

2002 2004

Year

2006

2008 2010

from the stockpile

- Tritium β -decay, ³H \rightarrow ³He + β (⁻e)
- Neutron detection,

Liters of He-3

250,000

200,000

150,000

100,000

50,000

0

1990 1992 1994 1996 1998 2000

• $n + {}^{3}He \rightarrow p + {}^{3}H + 0.76 \text{ MeV}$

³He stockpile decline ~ 2001.

ΝΔΤΙΟΝΔΙ ΙΔΒΟΒΔΤΟΒ'

EST 1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Additions to the stockpile from tritium decay (rough

estimate'

Alternative ³He productions

- Natural ³He, ~ 7 PPT(trillion) in the
- Tritium supply, ~ 20 kg
 - Essentially single source
 OPG (Canada)
 - High cost, \$100k \$300k/g
 ~ \$27k 80k/L
- Moon mining (solar fusion)
- Tritium breeding (ITER) n + ⁶Li → ⁴He + ³H + 4.8 MeV

UNCLASSIFIED

Z. Wang Slide 15

The ³He shortage problem – our solution, ¹⁰B powder

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Charge collection: Double-helix electrode config.

Performance (B): stability & γ-sensitivity

UNCLASSIFIED

Z. Wang Slide 19

- Introduction to LANSCE (a neutron source)
- ¹⁰B Detectors for ³He replacement
- Ultracold neutron detectors and science
- Future perspectives

UNCLASSIFIED

In 1936, Fermi realized first that the coherent scattering of slow neutrons would result in an effective interaction potential for neutrons traveling through matter; Experimental demonstration (1946, 1947);

UNCLASSIFIED

How cold is ultracold ?

Material:	V _F ^[8]	v _C [9]	η (10 ⁻⁴) ^[9]
Beryllium	252 neV	6.89 m/s	2.0-8.5
BeO	261 neV	6.99 m/s	
Nickel	252 neV	6.84 m/s	5.1
Diamond	304 neV	7.65 m/s	
Graphite	180 neV	5.47 m/s	
Iron	210 neV	6.10 m/s	1.7-28
Copper	168 neV	5.66 m/s	2.1-16
Aluminium	54 neV	3.24 m/s	2.9-10
↑			

⁵⁸Ni = 335 neV

Gravity: 1 m ~ 102 neV Magnetic field: 1 T ~ 60 neV

UNCLASSIFIED

Z. Wang Slide 22

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Fermi potential

The LANL UCN Source

UCN science \rightarrow Physics beyond the Standard Model

- **Neutron EDM**
- **Neutron** β-decay
- **Neutron lifetime**
- **Dark matter**

The neutron lifetime crisis \rightarrow 1-3 sec resolution

Neutron lifetime (UCNτ) experiment

UNCLASSIFIED

Z. Wang Slide 26

Detector design is important for accuracy

Gas detectors won't work

- ³He-based
- ¹⁰B –based

UNCLASSIFIED

Z. Wang Slide 28

Thin-film ZnS:Ag ~ old material (low cost)

EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

LOS

Fabrication: e-beam coating

UNCLASSIFIED

Z. Wang Slide 31

Surface textures

UNCLASSIFIED

Z. Wang Slide 32

UCN (Charged particle) spectrum

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

¹⁰B thickness determined by Beer's law

- $\lambda_a = \lambda_0 u_a/u_0 \rightarrow 36 \text{ nm} @ 4 \text{ m/s}$
- $T = 3 \lambda_a (95\%), 4\lambda_a (98\%)$
- ⁷Li signals needed for > 50% efficiency

 $3 \lambda_a \sim 100 \text{ nm} (\text{single layer sufficient for high efficiency})$

Z. Wang Slide 34

- Introduction to the LANSCE
- ¹⁰B Detectors for ³He replacement
- Ultracold neutron detector and applications

Future perspectives

- Neutron Telescope
- Neutron Microscope
- Ideal neutron detectors

UNCLASSIFIED

Z. Wang Slide 35

. . .

Neutron telescope

Challenge: large spatial dynamic range, 10⁶

UNCLASSIFIED

Z. Wang Slide 36

Microscope: using CCD cameras

W. Wei et al, NIMA 830 (2016) 36-43.

UNCLASSIFIED

Z. Wang Slide 37

A perfect neutron absorber

- Absolute efficiency (hard to prove exp.)
- UCN/Surface interactions (rough surface)
 - Rough surface \rightarrow difficult theor./comput. problem
 - An ideal absorbing surface for UCNs ??

Moth's eye

0.25 (1) 0.20

0.15

0.10

0.05

0.00

Relative efficiency (arb.

http://www.a-star.edu.sg

UNCLASSIFIED

Z. Wang Slide 38

Summary

Neutron detector development driven by

- Basic science (UCN, nuclear science, physics beyond the standard model)
- Applications (Homeland security, user facilities -- SNS)

Neutron measurements always limited by neutron flux

- Signal-to-noise is important
 - Gamma background (pulse shape discrimination);
 - Correlating different signals (timing);
 - Material use;
 - Low-noise electronics/digitizers;
- New materials, structures and data extraction/processing provide new opportunities for innovative neutron detectors

UNCLASSIFIED

The UCNT Collaboration

Indiana University/CEEM E. R. Adamek, N. B. Callahan, W. Fox, C.-Y. Liu, G. Pace, D. J. Salvat, B. A. Slaughter, W. M. Snow, J. Vanderwerp

> Joint Institute for Nuclear Research E. I. Sharapov

Los Alamos National Laboratory

D. Barlow, L. J. Broussard, S. M. Clayton, M. A. Hoffbauer, M. Makela, J. Medina, D. J. Morley, C. L. Morris, R. W. Pattie, J. Ramsey, A. Saunders, S. J. Seestrom, S. K. L. Sjue, P. L. Walstrom, Z. Wang, T. L. Womack, A. R. Young, B. A. Zeck

> North Carolina State University C. Cude-Woods, E. B. Dees, B. VornDick, A. R. Young, B. A. Zeck

> > *Oak Ridge National Laboratory* J. D. Bowman, S. I. Penttilä

Tennessee Technological University A. T. Holley

University of California, Los Angeles K. P. Hickerson

Virginia Polytechnic Institute and State University X. Ding, B. Vogelaar

> DePauw University A. Komives

• Los Alamos NATIONAL LABORATORY

Hamilton College

G. L. Jones

Acknowledgment

- Chris Morris
- Jeff Bacon
- Mike Brockwell
- Fred Gray (Regis University)
- Tim Gregoire (TSA systems /Rapidscan)
- Mark Hoffbauer
- Chuck Hurlbut (Eljen Technology)
- Many students & postdocs
- • •

UNCLASSIFIED

