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Where are superconducting

detectors used today?

HEP

Astronomy

CMB
optical photons

indirect dark matter

X-Ray/Gamma-Ray

Direct dark matter

particle calorimetry

Nuclear / materials



Types of superconducing detectors

Today:
Transition edge sensor bolometers
Kinetic inductance detectors

Not covered, but important:
Metallic magnetic calorimeters
SIS mixers
SQUIDS



Why use superconducting detectors?

1. You need sub-Kelvin temperatures anyway.
You're measuring sub-mm wavelength photons.

You're looking for low energy phonon events.
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Why use superconducting detectors?

1. You need sub-Kelvin temperatures anyway.
You're measuring sub-mm wavelength photons.
You're looking for low energy phonon events.

2. You want to create many pairs per event.

3. You need a steep thermometer.

4. You need high-Q resonators.

5. You want to use thin-film, wafer-fabrication techniques.



TES detectors



Further progress in CMB research requires hundreds of

kilopixels and (at least some) large telescopes.
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NTD bolometers in action: Planck HFI
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The Transition Edge Sensor Bolometer
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Electrical egn:
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Expanding the total power flowing through the thermal link, using the definitions of G
and (G as defined above and again keeping only first order terms,

L=

A

SG(T-T,)) = G(Ty — Ty) + G&T (3.6)
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Keeping lowest order terms with the two time constants are well separated:
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Assuming beta->0 and perfect voltage bias, the term in parenthesis goes to 1:
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The differential equation also allows for unstable (growing) solutions. In general, we require:

L <(3-2V2): 5.87, e~ L/R

This is a critical factor in TES design: you need high enough bandwidth for your science,
but long enough time constants for your readout.

We can do a similar calculation for noise, assuming thermal carriers move
randomly back and forth in equilibrium along a thermal link.

Typically only two terms:

o

; . 1 ¢ Opl
Photon noise: Sopt = 2hv Py + —
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Thermal carrier noise; Sa 4 i'?fl-lﬁ'!i'fr- G
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Excess noise
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More complicated models are often required:
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RV vs P/V plot

Responsivity of Superspec Pixels
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Freguency domain multiplexed TES read
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TES Bolometers: the good, the bad, and the

hard to read-out.

The good:

e Sensitivity is determined by two parameters:
G(T), Tc.

 Heritage: ~10° person-hours already spent
turning photons into CMB maps

The bad:

 Thin-film thermal prorties are hard to control.
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« SQUID readout is complicated and expensive.

 Limited dynamic range.

 Integration and testing is already a bottleneck.

PolarBear-2 module
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The kinetic inductance effect

The DC case:
Cooper pairs carry charge without scattering.
Internal E fields are canceled.

The AC case:
Cooper pairs have momentum.
Acceleration leads to a phase shift between | and V.
This acts like an inductance!

At low temperature:
To 1% order, Ly is constant.

To 2™ order, Ly varies linearly with the number of pairs.

Phase shift leads to E field inside the conductor:
Non-zero resistance from quasiparticle currents
R also varies linearly with number of pairs

Oct 9, 2016 Erik Shirokoff 28



We can make a detector out of this.

5211 (dB)

0.998 1.000 1.002

Af / f
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Transmission line MKID: ¥4 or ¥2 wavelength

antenna-coupled microwave line

Hard to achieve f < 1GHz

L. volumes are constrained (with caveats)

Allows on-chip filters, multi-band operation.

Image from Yates+13, A-MKID col.



Direct-absorbing lumped-element KID (LeKID):

iInductor Is impedance matched absorber

Feedline
Inductor

Capacitor

Coupler

L
¢ 1
LI

Image from Mazin group, UCSB
Decouple L and f. g group

Easy to achieve low frequencies.
But, matching free space impedance constrains inductor.

Dual-pol & multi-band designs are challenging



Resonator-bolometer or thermal KID (tKID):

measure thermal pair-breaking

(a)

Feedline i (b)
|E =]

Capacitor

AbSO rbe r Resonator

(Inductor)

Inductor

Gabs

300 um

Gsin

(Island) (Legs)

TBath

Image from Micelli group, ANL
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J— Jo

KIDs as single photon detectors

71 = (resonator BW) ™1

~ 107° s typically

7o =QP recombination time

~ 10™*s typically

time



Materials: we're limited by nature, but there are
several attractive choices

Optical cutoff: vy, S2A X 73GHz - T, /1K
Higher R,ormai — higher Lj; — higher response, lower freq.

Longer Tiecomb. — higher response. Higher (); — denser mux.
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Aluminum: easy to make, well understood, and

good enough for most applications.

Aluminum
Well described by theory (Mattis-Bardeen equations)
Easy to fabricate

Low Lg, but long 7
T.1.2K — 87 GHz
Q; few x 10% limit multiplexing to ~ 500/octave.

Aluminum Manganese

Mn-doping of Al sputter target adjustably depresses Tc.
Well-explored as TES material.

Microwave properties are under study by several groups.



Titanium-Nitride: high Qs, low readout

frequencies, demonstrated performance.

Sub-stoichiometric titanium nitride (TilN)
Nitrogen content determines 0.6 K < T.4.2K
Very high @; > 1 x 10° allows dense multiplexing.
Poorly fit by theory (Mattis-Bardeen equations)
Uniform sputtering is challenging.

High Lj, but moderate 7

Stoichiometric titanium nitride multi-layers
Adjust 1. using Ti or other normal metal in bi or tri-layer.
More uniform propeties when sputtered.

Compatible with atomic layer deposition.



Al multi-layers, novel materials.

Aluminum bi-layers

Use a multi-layer to lower Al Tc.
Al-Ti demonstrated with Al-like Qis.

Optical demonstrator in progress.

Short 7 options
Tungsten-Silicide

Platinum-Silicide



A complete system:

CASPER-ROACH
open-source
FPGA board

e [ Low noise cryogenic
amplifiers

Weinreb SiGe Cryo Amps Miteq .001-500 MHz

Sub-K fridge with
microwave coax

Readout: Today, $10/pixel with off-the-shelf hardware
— $1/pixel with custom boards and large orders




Multiplexing density / yield trade off

MUX density dominated by resonator collisions

Higher Q, better uniformity — more channels
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Figure based on Zmuidzinas internal memo
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Fundamental sensitivity limits

NEP? = “Background limit for all detectors -

(photon Poisson)2+(photon %086)2

+(recombination noise)%~ " Allpair breaking detectors.
. For ground based CMB case:

~ (photon Poisson)?

+1/R-(amplifier noise)?

_|_ 1 / R' (TL S Nolse) 5 /N f(l/readout, 0, ‘/inductor7TC)

+ (small terms)

Oct 9, 2016 Erik Shirokoff 40



Two Level System Noise: hard to predict a

priori, but follows known scaling laws

Attributed to tunneling states in amorphous dielectrics with broad microwave energy spectra.
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Sensitivity engineering: Thomas Edison science

In principle Mattis-Bardeen equations (and other BCS scalings)
provide a full description of KID responsivity, G-R noise, and amplifier
noise terms.

In practice, this works pretty well for aluminum, but poorly for other
materials.

Solution: lterate.

1. Make a KID, strive for clean surfaces.

2. Measure NEP.

3. Adjust design based on approximate scaling laws':

NEP1s o Q4 T2 VD™ T303

NEPomp o TO:3 (Qe/Qr) " T2 VS TS
4. GOTO 1.

* In this case, for a resonator operating at a fixed fraction of
bifurcation power in the linear-response regime.

Oct 9, 2016 Erik Shirokoff 42



On-sky cameras

NIKA / NIKA2 (IRAM 2011-pres.)

MUSIC: CSO 2012-2015 300/5000 1.25 and 2mm pixel
576 4-color pixels, 2Zmm-850 11 .

=), ——— ]

" MAKO (CSO 2015)
500 pixel, 350 or 850umm

;’

A-MKID (APEX 2015-pres.):
~20kpixel, 350 & 8504772

Oct 9, 2016 Erik Shirokoff 43



RV vs P/V plot

Responsivity of Superspec Pixels
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Many near term projects and demonstrators.

(Some are even funded.)

Golwala BB TIN

JPL TKIDs = e —
BLAST TNG Ah . s
E.U. SPACE-KIDs s N s | s seedl |
GroundBird — e e A
LITEBI rd KI DS BLAST TNG prototype, from Galitzki+14

uSpec

DESHIMA meil/é&l AN /\NbTiN Filter | °

X-Ray groups e S
5 ” | ( |

€

DESHIMA devices, image from A. Endo
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Existing KIDs already meet requirement for a
broad-band CMB pixel.

[ R = 340 channel

with T,, = 673 K 150 GHz]

NEP (W/+/Hz)

10—17 R > 1000 channel with T,,, = 62 K 0.0 ]
s | ,
10’ — .“"1.02 — -“"1-03 — -“"1.04 — “"105 2-0-5 i
frequency (Hz) o oo

i OQ% il
. . . < : AN *
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90GHz : 5pW /v Hz NoEhg 150 CHz e |
. . -1.5 CMB =

6x below background limit 0 2000 2000 G000 8000107000

Load Temperature [K]
Fig by S. Hailey-Dunsheath



Impedance matched microstrip works for low-

Impedance materials (Al)

N

27, inductor

high- ININININININTAT
pass
IMIN-wave
feed
\A\AAUAUAU A A
For materials with Ryorma; few /0, either transmission-line

KID or LeKID can work as dissipative mm-wave microstrip.

We’re building an Al demonstration now. Goddard’s mu-Spec
uses this approach already.



Chicago's CMB-KIDs program:

Antenna-coupled, multi-band CMB pixels

mm-wave KID KID microwave
antenna inductor capacitor readout
Ground plane removed
TiN
TiN SiO9

S1 substrate

Note: figure is not (even remotely) to scale.

1300 pm

v%




Wisconsin & Goddard CMB KIDs:

TIN direct absorber for QUBIC

100 GHz source, ground-based telescope

= TiN MKID

4e-17

3e-17} « -

NEP,,, [ W/V Hz ]
oy
=
~]

\3‘8 mm

le-Y oo 0.05 0.10 0.15 0.20 0.25

Bath Temperature [K]

* At 100 mK, a 100 GHz KID pays a 10%
penalty in NEP compared to a TES with a
readout bias factor of 2.

Courtesy of A. Lowitz, A.
Brown, V. Mikula, T.
A Stevenson, P. Timbie, and
\\- E. Wollack
Oct 9, 2016 Erik Shirokoff
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Columbia CMB KIDs: thin Al LeKIDs from a

commercial vendor for ground based CMB

1) low NET
100 [ R
2) IOW 1/f ........................................................................................................... Ey

: noise \/ :
= 4 -10D
_'- ,I\l ----- 'Z'
> kel
g\ -20 g
150 GHz, froa = 29.7 [Hz] ] g
4 K beam- fuwe = 7.4 [Hz], (445 RPM) 1_-30 <

ire scan speed = 2.00 [deg/sec]
ﬁlllng |Oad beam FWHM = 13.0 [arcmin] ]
1 10 100 1000
frequency [Hz] McCarrick et al. (2014)
' RSI, 85, 123117.
: 3) lots of bandwidth
— i//
. @ Measured photon noise for single layer direct absorber
T leKIDs from a commercial fabrication house.
A

Dual-pol prototype now being tested. Multichroic
horn+OMT pixels in design.

oct9,2016  All figures: B. Johnson E

rik Shirokoff
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Columbia/SLAC multi-band, horn-coupled CMB

band-pass filters

- /
hybrid O O /

M4 CPW resonator
e — =
tee /MKID(
TR / \ B /<~ }/’A‘( | microstrip input
% \)l VA TN ) | A
L o A e S 7 || T |
P \// || aluminum niobium
|| section section
@ A4S Y | dotiine Figures from
/ \
/
OMT

Johnson+ 2016
niobium
4.8 mm .

ground plane

probe tones

Dual-pol horn-coupled KIDs.

OMT and band-defining filters.
Al CPW KIDs.
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Al-Ti bilayer 100 MHz kids from Grenoble
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90 GHz Al-Ti bilayer horn-coupled
LEKIDs from Rome

A

Goal: 90 GHz horn-coupled demonstrator for the SMT.
Currently have optical tests of Al pixels, plans to test Al-Ti bi-layers.

Figure from Paiella+ 2016
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Application #1: time resolved astronomy

Counts

Crab Pulsar, 30 seconds at airmass 2.5 in ~2.5 arcsecond seeing

0.8 a

0.6

0.4

2.0

Phase

Optical enhancement of the Crab Nebula.
ARCONS MKID camera
Mazin Group, 2011



Application #2: speckle techniques
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Instantaneous speckles

Images: Olivier Lai (CFHT)
& Boccaletti+ 2000




Application #3: low resolution spectroscopy for

Throughput
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large scale optical surveys and followup
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Figures from Marsden+ 2013



e Grating disperses incident light into diffraction orders
* A Cross disperser separates orders spatially
* CCD imager

The Light Path of the High-Resolution Echelle Spectrograph

' 2b. Collimator 3. Echelle Grating

/\

2a. (

Collimator = —

1. Viewing Slit

6. Mimror

4. Cross Disperser

5. Correction Lenses

PN ; 7 /
7. Field Flattener \j

8. CCD (hidden behind field flattener in this view)

HIRES at Keck Telescope - http://www2.keck.hawaii.edu/inst/hires http://www.vikdhillon.staff.shef.ac.uk/teaching/ph
y217/instruments/phy217 inst_echelle.html

Slide from Sumedh Mahashabde Oxford KIDSbec



Conclusions

» Superconducting detectors provide:
- Very low NEP for continuum measurements
- Very high energy resolution for single-events

» Superconducting detectors require:
- Sub-Kelvin systems
— Thin-film fabrication



