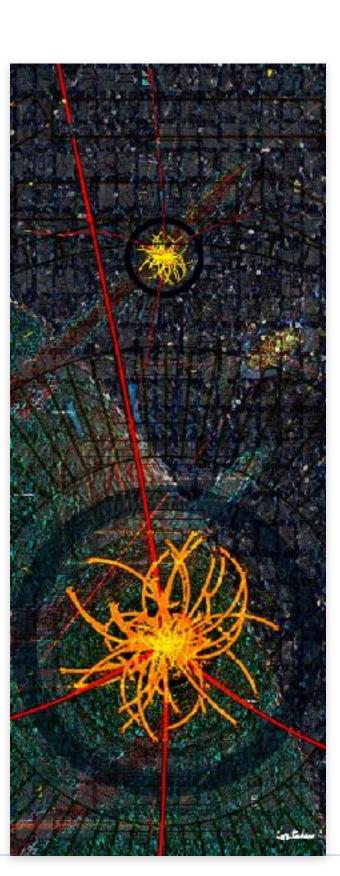
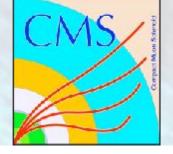


CMS Evaluation of Rucio


Brian Bockelman, Bo Jayatilaka, Natalia Ratnikova, Eric Vaandering

CMS Data Management Needs

- Our usage currently falls mostly in the "replica management" category
- Current statistics on our data storage and movement
 - Stored on tape O(100 PB)
 - Stored on disk O(50 PB)
 - Production file size O(1 GB), user file size O(100 MB)
 - Per day transfers ~1 PB, 1 M files (combined user, production)
 - 8 sites with tape, O(50-100) with managed disk
- Currently CMS has two DM systems
 - Production data is fully managed
 - Some user data is "lightly managed" (catalogued when produced, not able to be moved)
 - Some user data is completely unmanaged
- Numbers stay more or less constant for next 7-8 years, go up 50x in 2026 and beyond


Current CMS Data Management Situation

- CMS data stored in a three tiered structure:
 - Files target size 4 GB
 - Blocks usually about 100 files, designed to be a unit that can be stored and transferred at one site
 - Dataset some number of blocks, has a physics meaning (often stored all at a site, but no necessarily)
 - All 1:many maps, not many:many (unlike rucio)
- Primary data management is done by PhEDEx
 - Each site hosts a PhEDEx agent to manage its own data. Also manages local tape
 - Maintains a database of the desired states (blocks at sites) and issues FTS commands to achieve it
 - FTS is only one option for moving data, but ~all disk to disk is done with it
- A higher layer, Dynamo, monitors popularity of data and, based on rules, makes subscriptions to dynamically distribute popular data
- DBS (Data Bookkeeping Service) is our meta-data catalog.
 - Shares the same description of Files (including size & checksum), Blocks, Datasets with PhEDEx
 - Also stores physics metadata on the file, block, dataset level

Current CMS User Data Management

- User data is in DBS only, PhEDEx and Dynamo have nothing to do with it
- Produced at Site A, moved to Site B (user has a relationship with Site B)
 - User typically has 2 TB of storage at Site B as part of site pledge to CMS
- Can never be moved to Site C and reflected in DBS
- All done with AsyncStageOut (ASO) which is a thin layer on top of FTS
 - Considering removing even this thin layer
- CMS has largely given up the idea of storage for physics groups
- (I've kind of lied, we have an infrequently used process to turn user data into official data)
- Choices driven by tools, may re-evaluate if we adopt Rucio

CMS Review Process

- Two data management reviews in the last two years
- PhEDEx is aging and we realize its lifetime is limited
 - Now on third generation of developers
 - Overly complex in functionality and operations (effort needed at every Tier2 site)
 - Written in perl and some dependencies are now abandoned
 - Re-tuning as network capacities increase is necessary
- PhEDEx is capable of Run3 data transfers, probably not ideal
 - No confidence it can survive in the HL-LHC era
- Currently exploring two alternatives:
 - In house extension of Dynamo to handle transfers and eventually the catalog
 - Evaluation of Rucio rest of this talk
- Parallel and related effort by FNAL for current and future experiments Rob's talk later

CMS Rucio Evaluation

- November: Agreed to do a Rucio evaluation for CMS mostly with Fermilab effort
- Targeted towards July reviews of possible solutions, plan to pick one shortly thereafter
- A few people part time, more recently two collaborators from INFN joined
- Started with trying to install
- Then were offered and used U Chicago server for CMS
 - Many, many thanks to Judith Stephen and Benedikt Riedel!
- Spent some time familiarizing ourselves with subtle differences between ATLAS and CMS models

Evaluation continued

- Spent some time familiarizing ourselves with subtle differences between ATLAS and CMS models
- Remember CMS has Dataset Block File
 - Not perfect but fits OK into Rucio model:
 - ★ CMS Dataset Rucio Container
 - ★ CMS Block Rucio Dataset
- Also some differences in terms of how storage elements are thought of
- Everyone has also had to get familiar with the rucio CLI tools and concepts
- Given the holidays, progress has been reasonable
- Recently achieved milestones:
 - Inject CMS-like data structures into Rucio (Dataset, Block, File)
 - Upload and transfer files between existing CMS storage end points
- Still to do:
 - Full dataset transfers, rules, and then on to scale testing
 - Tape staging

Interaction with developers

- So far our interactions have been extremely positive. (Almost) all differences between CMS and ATLAS models have been addressed with new development
 - Lots of time spent by both groups understand each other's models
- Recall that CMS has O(200 PB) of existing data. Any transition needs to work with CMS data as is, not physically copying into new system with new names
- Special characters in CMS datasets: / and #
 - Addressed in latest release. Problematic because these characters are special in REST interface as well
- CMS has an existing namespace: /store/dir/subdir/etc/filename.ext (Logical filename)
 - Typically physical filename on a storage device is prefix + LFN
 - Rather different than ATLAS, but also accommodated without too much trouble
- CMS gave up on "scopes" sometime back (e.g. physics groups no longer manage their own data).
 - Not a problem, use a single scope and only use others for limited purposes

Stray questions

- 2e: Workflow management system is WMAgent which is based on GlideinWMS and Condor.
 - Currently its WMAgent which determines where data is located and sends jobs to that data
 - ★ There are other operation modes, but this is the dominant one
 - We have an outer layer which can modify idle jobs should data move
 - Integration between Condor and Rucio to determine the appropriate resources could be very useful

Conclusions

- Rucio meets CMS's immediate scalability needs and is a good enough fit to our existing data model
- Rucio developers have been very accommodating and encouraging
 - It is a concern for CMS if the effort continues to be owned by ATLAS
 - Community project would be ideal
- U Chicago system has been instrumental in helping with a quick start
- We still have lots of milestones to meet to show that CMS could adopt Rucio, but we are all optimistic they can be met before the summer review
 - Transition would take place during 2019-2020 LHC shutdown
 - Still need to map out exactly how this would happen
 - ★ What are the possibilities for running both our systems in parallel for a while