# DD Generator Calibration Source for DUNE

R. Svoboda, FNAL, March 2018

## Need for energy calibration over the whole detector

- electron transport and collection may not be uniform everywhere in the active volume – this needs to be calibrated and checked periodically
- this is difficult to do everywhere with calibration sources that test a single point
- very desirable not to have to insert devices while running
- DD generators can provide a non-invasive energy calibration source over the full volume of the detector due to a "window" resonance in elastic scattering at 57 keV

### Elastic Scattering from ENDF









Fortunately, 38-Ar and 36-Ar have different resonance structure that keep the argon from being totally transparent at the 40-Ar resonance.

Still expect  $\lambda$ >10 meters





DD Generators are commercial devices that could provide a source of low energy (2.45 MeV) neutrons. Costs are low (~\$100k) and they can be operated in pulse mode to give a trigger signal

| General Specifications       |                                                |  |
|------------------------------|------------------------------------------------|--|
| DD Neutron Yield             | 1 x 10 <sup>8</sup> neutrons/sec               |  |
| Neutron Energy               | 2.5 MeV                                        |  |
| Standard Neutron Source Size | ≤ 8mm diameter                                 |  |
| Small Source Size (option)   | ≤ 2 mm diameter                                |  |
| Simple scheduled maintenance | ≥ 2000 hrs, replacement of some internal parts |  |
| Standard operating mode      | Continuous                                     |  |
| Pulse on demand (option)     | ≥ 50 µS, to 100% duty factor                   |  |

#### Time structure of single pulse



### Why DD?

- No tritium used makes import/export and compliance with local rules much less difficult than DT or TT generators
- Low energy (2.45 MeV) is well below the neutron and proton separation energy of most elements – little activation expected.
- Monoenergetic spectrum (unlike TT) which will simplify neutron degrader design and shielding

# How to create a 57 keV neutron beam?





50% average energy loss/scatter

7% average energy loss/scatter

Resonance window just above 40-Ar window

40-Ar

# Simulation of 57 keV source on top of the protoDUNE-SP detector

insulation Argon gas Liquid Argon LAr Height=7.3m Height=8.1m W\_parallel=8.9m

(Vincent Fischer)



#### Simplified protoDUNE concept



- Simulation performed with rat-pac
- 57 keV neutrons (antiresonance) shot from the liquid argon "neutron filter" downwards in protoDUNE

#### Neutrons populate the whole Lar volume





#### aperture cone downwards

1 million

neutrons shot in

a 5-degree half





# How well do we know the neutron capture energy?

- Last November the ACED Collaboration (UC Davis and Boston University) took several hundred thousand neutron capture events at the DANCE facility at LANSCE
- These are now being analyzed to reconstruct individual gammas on an event-by-event basis. Looking to have results by this summer.
- This will provide LArSoft with a database of gamma cascades to use
- Note: easy to get more data if needed the gas target and peripheral equipment now stored at LANL

| Εγ<br>(keV)        | ΔEγ<br>(keV) | Iy/Iy(max)<br>(%) |
|--------------------|--------------|-------------------|
| 167.30             | 0.20         | 100.00            |
| 348.70             | 0.30         | 8.29              |
| 516.00             | 0.30         | 31.78             |
| 837.70             | 0.30         | 12.06             |
| 867.30             | 0.60         | 1.38              |
| 1044.30            | 0.40         | 7.54              |
| 1186.80            | 0.30         | 65.58             |
| 1354.00            | 0.40         | 2.89              |
| 1828.80            | 1.20         | 1.26              |
| 1881.50            | 1.00         | 1.76              |
| 1972.70            | 1.20         | 0.68              |
| 2130.80            | 0.80         | 5.52              |
| 2229.50            | 2.00         | 0.36              |
| 2291.70            | 2.00         | 0.26              |
| 2432.50            | 0.80         | 1.05              |
| 2566.10            | 0.80         | 3.51              |
| 2614.40            | 0.80         | 3.65              |
| 2668.20            | 2.00         | 0.63              |
| 2668.20            | 2.00         | 0.63              |
| 2771.90            | 0.80         | 10.81             |
| 2781.80            | 1.50         | 2.13              |
| 2810.60            | 0.80         | 7.42              |
| 2842.60            | 1.00         | 1.11              |
| 3089.50            | 1.00         | 1.38              |
| 3111.40            | 2.20         | 0.50              |
| 3111.40<br>3150.30 | 2.20<br>1.00 | 0.50<br>5.02      |
| 3365.60            | 1.00         | 5.28              |
| 3405.50            | 2.50         | 0.09              |
| 3405.50            | 2.50         | 0.09              |
| 3452.00            | 1.00         | 2.51              |
| 3564.70            | 2.50         | 0.16              |
| 3564.70            | 2.50         | 0.16              |
| 3658.70            | 1.80         | 0.31              |
| 3700.60            | 0.80         | 12.31             |
| 4102.70            | 1.50         | 0.38              |
| 4745.30            | 0.80         | 69.09             |
| 4917.10            | 2.00         | 0.09              |
| 5064.00            | 1.00         | 0.32              |
| 5449.00            | 2.50         | 0.07              |
| 5582.40            | 0.80         | 14.58             |
| 5960.70            | 2.50         | 0.01              |
| 6063.10            | 2.50         | 0.05              |
| 6082.80            | 2.50         | 0.03              |
| 6093.30            | 2.50         | 0.04              |
| 6142.50            | 2.50         | 0.03              |

#### Argon capture gammas

Binding Energy 6.1 MeV (monoenergetic)

Here are the major gammas - ACED will measure the correlated cascades

### How to verify the neutron antiresonance

- The LANSCE facility at LANL has a TOF beamline set up to make these kinds of measurements
- Would need a liquid argon target and perhaps some beam halo counters and associated electronics
- Recommend a proposal to LANL in February 2019 for a beam run in late 2019 or early 2020
- Costs should be <\$100k total, as LANL provides beam monitors and does not charge users for beam time

#### Interested Groups

- UC Davis
- Boston University
- Illinois Institute of Technology
- Lisbon (LIP) potential DUNE collaborators

We have had one meeting and would like to form a Working group specifically for this source