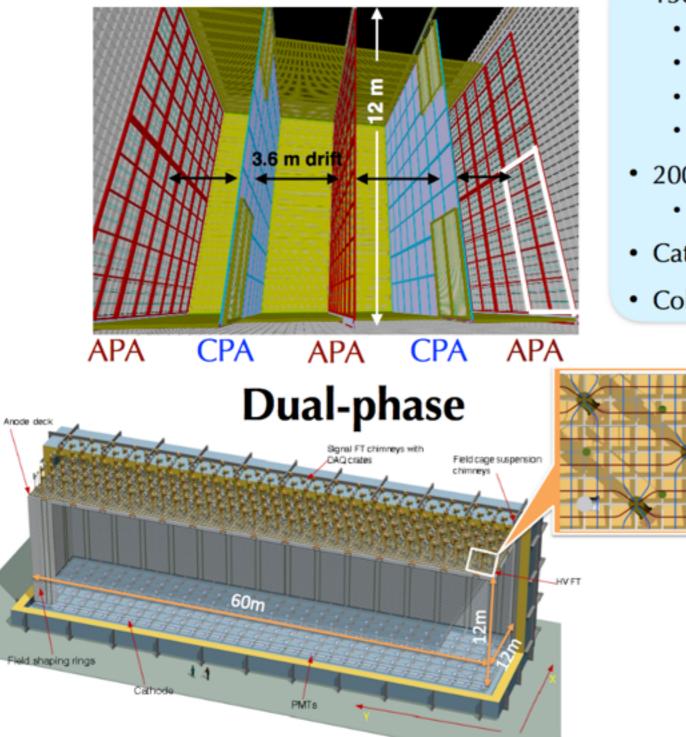

Dual Phase Considerations

- Conversation starter, not a complete set of slides.
- Keep DP in mind as we discuss topics
- A dedicated session on Dual Phase Friday morning

Dual Phase Technology

Concept of double-phase LAr TPC (Not to scale)



- Liquid and gas phase
- Ionization signals amplified and detected in the gaseous phase above liquid level

Inés Gil Botella - Low Energy @DUNE

Two detector designs

Single-phase

- 150 Anode Plane Assemblies (APAs)
 - 6 m high x 2.3 m wide
 - · embedded photon detection system
 - · wrapped wires read out both sides
 - 1 collection & 2 induction wire planes (wire pitch 5 mm)
- 200 Cathode Plane Assemblies (CPAs)
 - 3 m high x 2.3 m wide
- Cathode at -180 kV for 3.6 m drift
- Cold electronics (384,000 channels)
 - 80 3 x 3 m² CRP modules at the gas-liquid interface (2D charge collection)
 - Hanging field cage and cathode at 600 kV (12 m drift)
 - Decoupled PD system (PMTs)
 - Finer readout pitch (3 mm), high S/N ratio, lower energy threshold, better pattern recognition, fewer readout channels (153,600), absence of dead material

Two proposed technologies

Single-phase reference design for the CDR

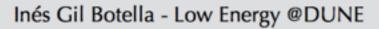
Table 1: Parameters of the DUNE Far Detector LArTPC.

Parameter	Value		
Module height	12.0 m		
Module width	14.5 m		
Module length	$58.0\mathrm{m}$		
channels per APA	2,560		
APAs per module	150		
Active height (APA)	6.0 m		
Active width (APA)	2.3 m		
Drift distance in Liquid Argon	3.6m		
Drift velocity	$1.6\mathrm{mm}/\mathrm{\mu s}$		
Drift time	$2.25\mathrm{ms}$		
# drifts/readout factor	2.4		
readout time	$5.4\mathrm{ms}$		
bytes/sample	1.5		
sample rate	2.0 MHz		
samples/readout	10,800		
# of detector modules	4		
Total $\#$ of channels	1,536,000		

Dual-phase

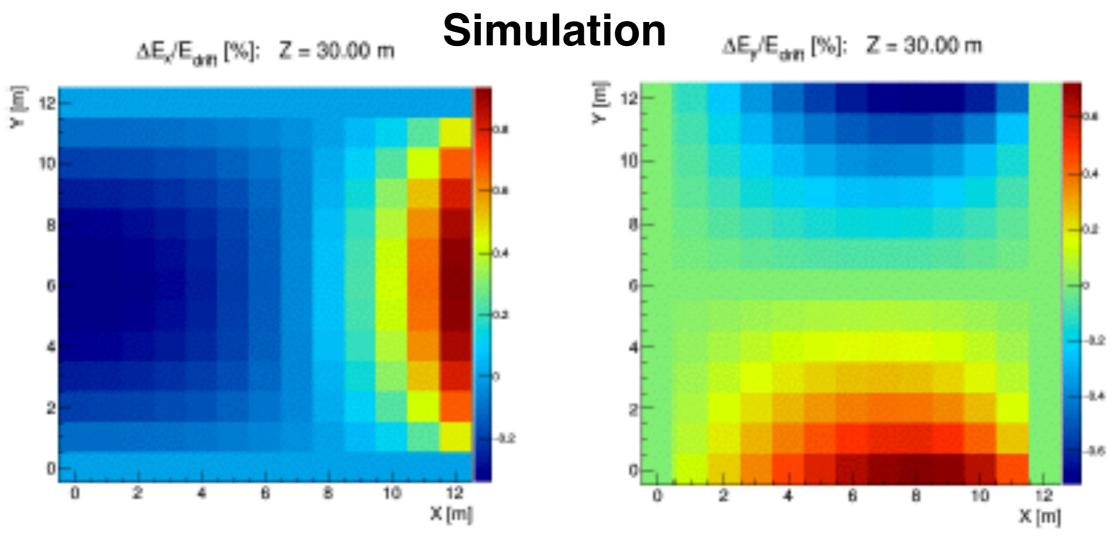
alternative design for the CDR

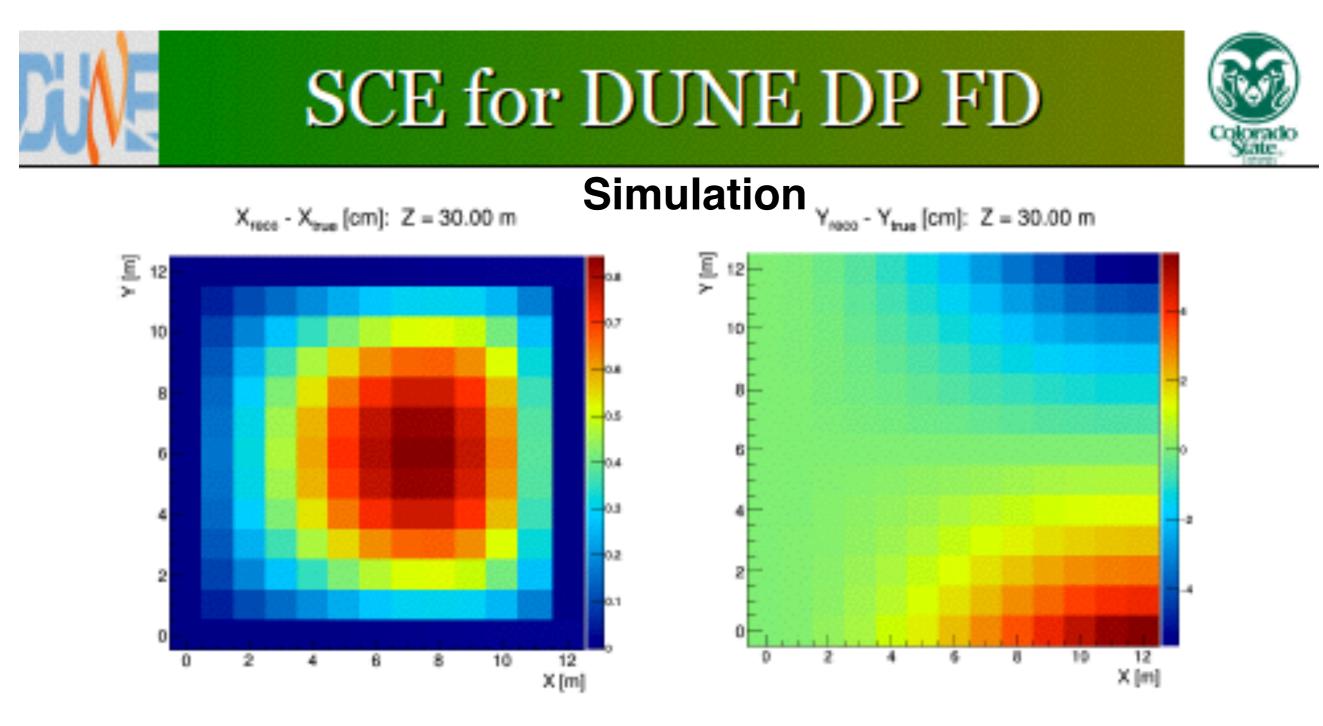
Parameter	Value		
Full length	60.0 m		
Detectors	4.0		
channel/CRP	1,920		
CRP/detector	80		
Active height	12.0 m		
Active width	12.0 m		
Drift distance	12.0 m		
Drift velocity	$1.6\mathrm{mm}/\mathrm{\mu s}$		
Drift time	$7.5\mathrm{ms}$		
bytes/sample	1.5		
sample rate	2.5 MHz		
# drifts/readout	1.0		
Readout time	$7.5\mathrm{ms}$		
Samples/readout	18,750		
Total $\#$ of channels	614,400		


2: Basic parameters of the alternative Far Detector design.

Expected detector capabilities

Parameter	Requirement	Achieved Elsewhere	Expected Performance	
Signal/Noise Ratio ¹	9:1	10:1 [11, 12] ²	9:1	
Electron Lifetime	3 ms	> 15 ms [12]	$> 3 \mathrm{ms}$	
Uncertainty on Charge				
Loss due to Lifetime	< 5%	< 1% [12]	< 1%	
Dynamic Range of Hit				
Charge Measurement	15 MIP		15 MIP	
Vertex Position Resolution ³	(2.5,2.5,2.5) cm		(1.1,1.4,1.7) cm [13, 14]	
$e-\gamma$ separation ϵ_e	> 0.9		0.9	
$e-\gamma$ separation γ rejection	> 0.9		0.99	
Multiple Scattering Resolution				
on muon momentum ⁴	$\sim 18\%$	$\sim 18\%$ [15, 16]	$\sim 18\%$	
Electron Energy Scale			From LArIAT	
Uncertainty	$\sim 5\%$	$\sim 2.2\%$ [17]	and CERN Prototype	For $E_e < 50$ MeV
Electron Energy Resolution	$0.15/\sqrt{E(\text{MeV})}$	$0.33/\sqrt{E(MeV)}$ [17]	From LArIAT	11%/√E(MeV) +
	$\oplus 1\%$	+1%	and CERN Prototype	
Energy Resolution for			From LArIAT	ICARUS
Stopping Hadrons	< 10%		and CERN Prototype	
Stub-Finding Efficiency ⁵	> 90%		> 90%	


Table 5.1: Performance	ar detector design			
Parameter	Requirement	Achieved Elsewhere	Expected Performance	
Gas phase gain	20	200	20-100	
Electron Lifetime	3 ms	> 3 ms 35-t prototype	> 5 ms	
Minimal S/N after 12 m drift	9:1	> 100:1	12:1-60:1 Adva	antage for low energy measurement


DUNE DP FD – looking at full detector, central Z slice

Ionization drift is to the left (anode on left, cathode on right)

E field distortions on order of 1% – larger than for SP case

Impact on dQ/dx from recombination ~ 0.3%

M. Mooney

DUNE DP FD – looking at full detector, central Z slice

Ionization drift is to the left (anode on left, cathode on right)

Spatial distortions on order of 5 cm – not negligible!

 Total impact on dQ/dx (including recomb.) ~ 2-3% M. Mooney⁷

DP Challenges

- *E-field distortions biggest concern?*
 - Ionization sources (e.g. Ar39)
 - Drift field deformations (misalignments, resistor failures etc.)
 - Argon flow pattern (steady state or turbulent) can significantly impact this, for both SP and DP
 - Even more complicated for DP, positive ions may collect above the liquid and create surface interface issues. Negative ions may also accumulate on surface.
- The 12 m vertical drift can pose challenges
 - Electron lifetime?
 - Diffusion?
 - Recombination? impacted by E-field

Other Challenges/Considerations?

What can be learnt from Prototypes?