

Calibrations of DUNE Far Detector w/ Ar-39

Michael Mooney
Colorado State University

DUNE Calibration Workshop March 14th, 2018

Reality Check

- Many calibrations done at MicroBooNE utilize cosmic rays (e.g. electron lifetime - see backup)
 - MicroBooNE on surface → 4000 cosmics/second
- ♦ Not a reliable option at DUNE FD due to being almost a mile underground
 - DUNE FD: 4000 cosmics/day (and 20 Michels/day)
 - ... and this is for an entire 10 kt module!
 - Corresponds to 5 cosmics/day/m³
- ♦ Cosmics can still help, but need alternative charge sources for calibrations
- ◆ Plenty of Ar-39 beta decays at DUNE FD (O(50000) per readout) good option that should be explored for DUNE, studied first at MicroBooNE/ProtoDUNE

Ar-39 Beta Decays

Benetti et al., "Measurement of the specific activity of Ar-39 in natural argon" (2006).

- ◆ Ar-39 beta decay cut-off energy is 565 keV
 - This is close to the energy deposited on a single wire by a MIP at MicroBooNE
- Several things smear observed charge spectrum, e.g.:
 - Electronics noise
 - Recombination fluctuations
 - Unknown location of Ar-39 decay in drift direction
- For last point: we know decays are uniform in x

Ar-39 Beta Decays

Example Use Case: Fine-Grained Electron Lifetime Measurement

- ◆ Ar-39 beta decay cut-off energy is 565 keV
 - This is close to the energy deposited on a single wire by a MIP at MicroBooNE
- Several things smear observed charge spectrum, e.g.:
 - Electronics noise
 - Recombination fluctuations
 - Unknown location of Ar-39 decay in drift direction
- ♦ For last point: we know decays are uniform in x

Spectral Shape

- ◆ <u>For clarification</u>: previously was showing simple Fermi function for Ar-39 beta decay spectrum
- ♦ Have changed to proper shape accounting for firstforbidden unique decay of betas from Ar-39

Elec. Lifetime vs. Recomb.

- ◆ Electron lifetime and recombination both impact spectrum, but in different ways → largely separable
- ♦ Noise also leads to smearing, but this can be measured very precisely with noise data

Single Phase vs. Dual Phase

- ♦ Have been showing spectra for lifetimes observed in single phase DUNE FD – also look at dual phase
- ◆ Effect is more pronounced in dual phase (longer drift) measurement should be more precise there

TPC Calibration Items

- Ex-situ (can also be performed in-situ, at least in principle):
 - Diffusion (longitudinal and transverse)
 - Recombination (angular/energy dependence, fluctuations)
 - Wire field response (modulo potential wire-to-wire variations)
- ♦ In-situ w/ pulser:
 - Electronics response (gain, shaping time, pole-zero effects, etc.)
 - ADC ASIC calibrations (linearity, other "features" like stuck codes)
- ◆ In-situ w/ ionization signals:
 - Electron lifetime (including spatial/temporal variations)
 - Space charge effects and other field effects (e.g. field cage resistor failure)
 - Wire field response wire-to-wire variations
- Do these then study "standard candles" in data (e.g. Michels)

TPC Calib. w/ Ar-39

- Ex-situ (can also be performed in-situ, at least in principle):
 - Diffusion (longitudinal and transverse)
 - Recombination (angular/energy dependence, fluctuations)
 - Wire field response (modulo potential wire-to-wire variations)
- ◆ In-situ w/ pulser:
 - Electronics response (gain, shaping time, pole-zero effects, etc.)
 - ADC ASIC calibrations (linearity, other "features" like stuck codes)
- In-situ w/ ionization signals:
 - Electron lifetime (including spatial/temporal variations)
 - Space charge effects and other field effects (e.g. field cage resistor failure) → as online monitor of abrupt changes
 - Wire field response wire-to-wire variations
- ◆ Do these then study "standard candles" in data (e.g. Michels)

Triggers, Event Rates

- ♦ Plenty of Ar-39 beta decays in detector, so just need to take minimum-bias readouts (continuously)
 - External trigger (e.g. pulser) will suffice
- ♦ Ar-39 beta decay rate is about 1 Bq/kg
 - 10 kt \rightarrow O(50k) decays per 5 ms readout (entire module)
- ◆ From studies at MicroBooNE (CSU undergraduate Alex Flesher), O(250k) decays can provide high-precision electron lifetime measurement
 - Integrated over entire 10 kt module: O(5) events
 - Every square meter: O(100k) events
 - Every wire pitch: O(2M) events
- ♦ Ideally, measure electron lifetime every m²
 - Wire-to-wire response variations: every wire pitch

Measurement Needs

- ♦ How often should we be making electron lifetime measurement?
 - <u>Guess</u>: once a day (currently being done at roughly this rate at MicroBooNE with cosmics)
 - Maybe more/less often, but may not know ahead of DUNE
 FD operations what necessary rate is
- ♦ For O(100k) readouts in one day: **~1 Hz** trigger rate
- ♦ This is a lot of data, but:
 - Can reduce requirement of spatial precision
 - Can reduce rate of measurement (e.g. every few days)
 - Zero-suppression will help a lot just need to keep ±1 wire, ±20 time ticks within signal above threshold
 - Collection plane only; induction plane needs more

Progress at MicroBooNE

Radiological MC (RadioGen module) run for MicroBooNE

- ◆ Things are progressing at MicroBooNE thanks to work by CSU undergraduate Alex Flesher, who is working with Mike
 - Nothing public yet, but quickly developing effort
 - Alex will work with new CSU postdoc to produce public result sometime this fall (first: poster in FNAL User's Meeting)
- ◆ Also making use of radiological MC (RadioGen module) thanks to Tom Junk, Juergen Reichenbacher, Jason Stock

Cosmogenic Background

- MC cosmogenic background energy spectrum (no radiological sources; only tracks) fits well to the "Crystal Ball" function
- This is helpful for characterizing background contamination related to cosmic tracks

$$f(x;lpha,n,ar{x},\sigma) = N \cdot egin{cases} \exp(-rac{(x-ar{x})^2}{2\sigma^2}), & ext{for } rac{x-ar{x}}{\sigma} > -lpha \ A \cdot (B - rac{x-ar{x}}{\sigma})^{-n}, & ext{for } rac{x-ar{x}}{\sigma} \leqslant -lpha \end{cases}$$

where

$$egin{align} A &= \left(rac{n}{|lpha|}
ight)^n \cdot \exp\left(-rac{|lpha|^2}{2}
ight), \ B &= rac{n}{|lpha|} - |lpha|, \ N &= rac{1}{\sigma(C+D)}, \ C &= rac{n}{|lpha|} \cdot rac{1}{n-1} \cdot \exp\left(-rac{|lpha|^2}{2}
ight), \ D &= \sqrt{rac{\pi}{2}} \left(1 + \operatorname{erf}\!\left(rac{|lpha|}{\sqrt{2}}
ight)
ight). \end{split}$$

- Cosmogenic background (photons, neutrons?) can be mitigated by track proximity "veto" but not eliminated
 - Shape similar to U-238, Th-232 complication on surface

Small Underground TPC

- ◆ Lack of knowledge of recombination will complicate use of spectrum for nailing down electron lifetime
 - Need to know both mean recombination and fluctuations in recombination at this energy scale
 - Chatting with experts, conclusion is that we don't know this very well for argon, needs study for precision calibration
- ◆ Ahead of DUNE, measure Ar-39 charge spectrum
 - At MicroBooNE (ongoing)
 - In separate TPC setup for precision measurement
 - Underground
 - Short drift
 - t₀ tag from light

M. Mooney, D. Warner

Conceptual design for portable cryostat

Discussion

- ♦ Uses for Ar-39 beta decays at DUNE FD
 - Fine-grained (time/space) electron lifetime measurement
 - Electric field distortion monitor (from e.g. space charge)
 - Measurement of wire-to-wire field response variations
 - In-situ studies of recombination and diffusion
- ◆ Some considerations (mainly for electron lifetime):
 - Probes region closer to anode can extrapolate, but assumes constant in X; couple with cosmics to get X?
 - Requires precision noise measurement stable in time?
 - Noise level must not be too high (< 1000 e⁻ ENC)
 - Saving enough data for induction planes may lead to unreasonable DAQ requirements → measure only in Z?
 - Greatly benefits from precise characterization of Ar-39 beta decay charge spectrum in small underground TPC

BACKUP SLIDES

Ar-39 Data Rates, Etc.

- ◆ Working off of previous slide, data rates assuming at 1 Hz trigger rate (entire 10 kt module):
 - Without zero-suppression: 4 GB/s
 - With zero-suppression (if keep all decays): 12 MB/s
 - With zero-suppression (with thresholding): 5 MB/s
- ◆ Scale this down as you reduce spatial/temporal granularity of electron lifetime measurement
 - Hard to predict ahead of first operations, numbers here are best guess
 - Limitations of DAQ may restrict measurement
- ♦ Note we only need TPC information for measurements, but should take PDS information as well if possible (for PDS calibrations?)

SCE for DUNE SP FD

- ◆ DUNE SP FD looking at one half of central Z slice
 - APA+CPA+APA
- ◆ E field distortions on order of **0.1%** very small!
 - Impact on dQ/dx from recombination ~ 0.03%

SCE for DUNE SP FD (cont.)

- ◆ DUNE SP FD looking at one half of central Z slice
 - APA+CPA+APA
- ◆ Spatial distortions on order of **1.0-1.5 mm** small!
 - Total impact on dQ/dx (including recomb.) < 0.1%

SCE for DUNE DP FD

- ◆ DUNE DP FD full detector, central Z slice
 - Ionization **drift is to left** (anode on left, cathode right)
- ♦ E field distortions roughly **1%** larger than for SP
 - Impact on dQ/dx from recombination ~ 0.3%

SCE for DUNE DP FD (cont.)

- ◆ DUNE DP FD full detector, central Z slice
 - Ionization drift is to left (anode on left, cathode right)
- ◆ Spatial distortions roughly **5 cm** not negligible!
 - Total impact on dQ/dx (including recomb.) $\sim 2-3\%$