

Top, bottom and charm Yukawa couplings

Alessandro Calandri CPPM-Aix Marseille Université

on behalf of the ATLAS, CMS and LHCb Collaborations

HL/HE LHC Workshop, April 4th-6th 2018 @ Fermilab

Charm/bottom and top-Higgs Yukawa couplings

- Constraints on charm, bottom and top Yukawa coupling are one of the benchmark results of the current LHC program
 - deviations from SM expectations would reveal new physics
 - **charm and bottom couplings** can be probed in VH→cc, H→J/ ψ y,VH→bb, boosted H→bb
 - decay in bottom quarks characterized by highest BR in SM at 125 GeV
 - top-Higgs Yukawa couplings can be probed in production (ttH)
 - very small production cross-section at $\sqrt{s=13}$ TeV (1% of the inclusive Higgs production at LHC)
 - challenging final state with large object multiplicity (jets, bjets, leptons)
 - dominant backgrounds with large yields and theoretical uncertainties

- Prospect studies at HL-LHC also getting available
 - projections on charm/bottom and top Yukawas at 3000 fb⁻¹ extracted for $\sqrt{s}=13$ TeV

Search for VH→bb and VH→cc @ LHCb & ATLAS

arXiv: 1802.04329 (submitted PRL)

- Search for VH→bb and VH→cc @ LHCb (2012 data, 1.92 fb⁻¹)

 LHCb-CONF-2016-006
 - analysis sensitivity is orders of magnitude above the SM - upper limits on SM processes
 - multivariate discriminant to separate b-jets wrt light-flavour and c-jets
 - Iimits VH→bb @ 95% CL: 84 X SM (50XSM observed) VH→cc @ 95% CL: 7900 X SM (6400XSM observed)

- \longrightarrow Search for VH→cc @ ATLAS (2015+2106 data, 36.1 fb⁻¹)
 - focus on ZH production H→cc invariant mass as discriminant (in 1/2 c-tag categories with additional requirements on pt^Z)
 - new c-tagging algorithm developed by ATLAS for Run 2 analyses
 - main background is Z+jets

no significant evidence of ZH→cc production (limit at 110 SM predictions)

$H/Z->J/\psi_X$ @ ATLAS Phys.Rev.Lett. I 14 (2015) no. 12, 121801

- Higgs couplings to charm quarks sensitive to BSM physics
 - analysis at 8 TeV with 20.3 fb⁻¹
 - expected SM branching ratios
 - BR(H \rightarrow J/ ψ γ)=2.8 · 10⁻⁶
 - BR(Z→J/ ψ Y)=9.9 · 10⁻⁸
 - ψ upper limit on BR (H→J/ψγ) approximately 540 × SM predictions
 - main background from inclusive QCD processes modelled with data driven templates to describe kinematic distributions
 - Simultaneous unbinned maximum likelihood fit to μμγ for the selected events
 - No significant excess of events observed above the background

Analysis with full 2015+2016 data (36.1 fb⁻¹)

- two or more b-jets tagged with MV2 b-tagging algorithm trained against light-flavour and c-jets
- multivariate discriminant to discriminate VH→bb signal vs the sum of all background processes
- VZ→bb channel used as analysis cross-check
- systematic uncertainties for the modeling of the signal and background processes, for the limited size of the simulated samples and for the b-jet tagging play an important role
- Evidence of the VH \rightarrow bb process (4.0 σ expected, 3.6 σ observed)

Bottom Yukawa couplings consistent with Standard Model predictions

VHbb in CMS

- Analysis with full 2015+2016 data (35.8 fb-1)
- CMS
- same final state as in ATLAS (0, I and 2-leptons)
- combined multivariate b-tagging algorithm with low-level (impact parameter, reconstruction of secondary vertex) inputs - significant b-jet efficiency and background (light-flavour and c-jets) rejection
- main backgrounds:V+jets, ttbar, single-top production and QCD multijet production
- multivariate regression (BDT) to improve invariant mass
 of di b-jet system and separate VH→bb
- main systematics uncertainty from background modeling

		Individual contribution	Effect of removal to
ource	Type	to the μ uncertainty (%)	the μ uncertainty (%)
Scale factors (tt̄, V+jets)	norm.	9.4	3.5
Size of simulated samples	shape	8.1	3.1
Simulated samples' modeling	shape	4.1	2.9
b tagging efficiency	shape	7.9	1.8
Jet energy scale	shape	4.2	1.8
Signal cross sections	norm.	5.3	1.1
Cross section uncertainties	norm.	4.7	1.1
(single-top, VV)			
Jet energy resolution	shape	5.6	0.9
b tagging mistag rate	shape	4.6	0.9
Integrated luminosity	norm.	2.2	0.9
Unclustered energy	shape	1.3	0.2
Lepton efficiency and trigger	norm.	1.9	0.1

- Evidence of the VH→bb process (2.8σ expected, 3.3σ observed)
- Bottom Yukawa couplings consistent with Standard Model expectations

Boosted Hbb @ CMS

35.9 fb⁻¹ (13 TeV)

- Largest Higgs production and decay mode is gluon fusion in H→bb (58%)
 - very large QCD background (10⁸ times larger)
 - accessible via boosted dijet topology \rightarrow new physics probed in high Q² phase-space
 - using fat-jets (R=0.8) containing two b-quarks
 - double b-tagging algorithm combines vertexing and tracking information in a multivariate discriminant
 - QCD background estimated from data in sidebands
 - Higgs pt modelling comparison of MC generators with different matrix-element and parton shower schemes (large modeling systematics)
 - Observation of Z(bb) in single-jet topology
 - \rightarrow Significance of Hbb is 1.5 σ (0.7 σ expected)

Systematic source	W/Z	H
Integrated luminosity	2.5%	2.5%
Trigger efficiency	4%	4%
Pileup	<1%	<1%
$N_2^{1,\text{DDT}}$ selection efficiency	4.3%	4.3%
Double-b tag	4% (Z)	4%
Jet energy scale/ resolution	10/15%	10/15%
Jet mass scale (p_T)	$0.4\%/100 \text{ GeV } (p_T)$	$0.4\%/100 \text{ GeV } (p_T)$
Simulation sample size	2–25%	4–20% (GGF)
$H p_T$ correction		30% (GGF)
NLO QCD corrections	10%	
NLO EW corrections	15–35%	
NLO EW W/Z decorrelation	5–15%	

LEH->bb @ ATLAS/CMS

arXiv: 1712.08895 (accepted in PRD)

arXiv: 1803.06986 (CMS ttH full-had)

CMS-PAS-HIG-17-026

Analyses with 2015+2016 data from ATLAS and CMS

categories based on jet, b-jet multiplicity and b-tagging requirements (1-lepton and 2-lepton final states)

analysis strategy based on multivariate classifiers (reconstruction, classification BDT, likelihood, and MEM in ATLAS, deep neural network CMS)

- main theoretical uncertainties on tt+HF ($tt+\geq Ib$) modeling
- CMS has also made public ttH(bb) full-hadronic final state

Significances:

 \boldsymbol{H}

- 2.2 σ expected significance (CMS), $\mu_{Combined}$ =0.72±0.24(stat) ±0.38
- 1.6σ expected significance (ATLAS)
- main difference: no ttb generator comparison systematics in **CMS**

LLH->yy, H-ZZ*->4L @ ATLAS/CMS

arXiv: 1802: 04146 (submitted PRD)

JHEP 11 (2017) 047

- \longrightarrow High purity in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$
 - very small signal yield
 - various ttH-enriched categories
 - background model extracted from sidebands
 - ♦ observed signal strength in CMS ttH(H→ $\gamma\gamma$): μ_{Combined}=2.2±0.9

- results compatible with SM predictions
- dominated by data statistics

→ H→ZZ→4I

upper limits (no event observed)

ttH->multileptons @ ATLAS/CMS arXiv: 1712.08891 (accepted PRD) Combined Signal strength µttH $=1.6\pm0.5/0.4$ @ ATLAS, $11 + 2\tau_h$ 1.2±0.4 @ CMS 2lss $\mu = 1.61$ ttH signal significance: 4.1 σ $2lss + 1\tau_h$ (expected 2.8σ) @ ATLAS, 3.1σ (expected 2.8σ) @ 31 **CMS** $31 + 1_{h}$ Good compatibility among channels Pre-fit impact on μ : $\theta = \hat{\theta} - \Delta \theta$ $\theta = \hat{\theta} + \Delta \theta$ -0.15 -0.1 -0.05 0 0.05 0.1 Post-fit impact on µ: **ATLAS** $\theta = \hat{\theta} - \Delta \hat{\theta}$ $\theta = \hat{\theta} + \Delta \hat{\theta}$

Source of uncertainties

- ttH modeling (affecting SM ttH cross section in the denominator of μ)
- experimental uncertainties (jet energy scale, resolutions, b-tagging)
 - non-prompt lepton estimate, lepton efficiency

Status of ItH results @ ATLAS and CMS

- Combiation of ttH evidence of ttH process in ATLAS and CMS
 - tt+HF modeling in H→bb, ttH signal modeling for H→bb and H→Multilepton, theory systematics (tt+HF cross section and PS)
 - simulation statistics is still an issue for both experiments
 - experimental uncertainties are mostly dominated by lepton fakes (ML), jet energy scale and b-tagging

arXiv: 1712.08891 (accepted PRD)

CMS-PAS-HIG-17-026

Uncertainty Source	Δ	μ
$tt \text{ modeling in } H \to bb \text{ analysis}$	+0.15	-0.14
$t\bar{t}H$ modeling (cross section)	+0.13	-0.06
Non-prompt light-lepton and fake $ au_{ m had}$ estimates	+0.09	-0.09
Simulation statistics	+0.08	-0.08
Jet energy scale and resolution	+0.08	-0.07
$t\bar{t}V$ modeling	+0.07	-0.07
$t\bar{t}H$ modeling (acceptance)	+0.07	-0.04
Other non-Higgs boson backgrounds	+0.06	-0.05
Other experimental uncertainties ATLAS	+0.05	-0.05
Luminosity	+0.05	-0.04
Jet flavor tagging	+0.03	-0.02
Modeling of other Higgs boson production modes	+0.01	-0.01
Total systematic uncertainty	+0.27	-0.23
Statistical uncertainty	+0.19	-0.19
Total uncertainty	+0.34	-0.30

Uncertainty source	$\pm \sigma_{\mu}$ (observed)	$\pm \sigma_{\mu}$ (expected)
total experimental	+0.15/-0.16	+0.19/-0.17
b tagging	+0.11/-0.14	+0.12/-0.11
jet energy scale and resolution	+0.06/-0.07	+0.13/-0.11
total theory	+0.28/-0.29	+0.32/-0.29
tt+hf cross-section and parton shower	+0.24/-0.28	+0.28/-0.28
size of MC samples	+0.14/-0.15	+0.16/-0.16
total systematic	+0.38/-0.38	+0.45/-0.42
statistical	+0.24/-0.24	+0.27/-0.27
total	+0.45/-0.45	+0.53/-0.49

tH production

- Search for tH production in H→bb/ H→ML (CMS) and tH-enriched categories in H→yy (ATLAS) final states to probe anomalous couplings
 - upper limit on tH cross sections (far from SM expectation)
 - measurement dominated by statistical uncertainties

Prospect studies for HL-LHC

Prospects on couplings

—

Large improvement in top/bottom Yukawa coupling precision at High-Luminosity LHC (300 fb⁻¹ and 3000 fb⁻¹)

Run 2

Prospects on couplings (2) - Hbb

ATL-PHYS-PUB-2014-016

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

Δμ/μ

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 3000 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

0 0.05 0.1 0.15 0.2 0.25

 $\Delta \lambda_{XY} = \Delta (\frac{\kappa_X}{\kappa_X})$

Projection using Run I analysis strategy with expected performance at <µ>= 140 - all uncertainties (Run I experimental/theory systematics) and no theory uncertainties

CMS-PAS-FTR-16-002 Prospects on couplings (3) - Eth

- Projection on top-Yukawa couplings by extrapolation from Run 2 analysis
 - ▶ SI+: systematics uncertainties kept same as Run 2 with presence of high pile-up and detector improvements, S2+: systematics scaled wrt Run 2 analysis (theory → I/2, experimental → ~ I/L)
- \checkmark H \rightarrow $\chi\chi$ and H \rightarrow ZZ* \rightarrow 4l are currently statistically-limited, multilepton will soon be systematically-limited and H \rightarrow bb requires a lot more thoughts about ttb modeling already now in order to improve the current results

Prospects on H->J/UY @ ATLAS

- Higgs couplings to charm quarks sensitive to BSM physics
 - extrapolation from Run I results to 300 fb⁻¹ and 3000 fb⁻¹ at 14 TeV
 - same analysis selection to identify $J/\psi\gamma$ candidate as in Run I
 - using multivariate discriminant trained to enhance signal sensitivity
 - BDT with photon and di-muon pt + γ and
 μ isolation included as inputs
 - main source of background is inclusive production of J/ψ and a reconstructed high energy photon
 - \blacktriangleright simultaneous fit of m($\mu\mu\gamma$) vs pt($\mu\mu\gamma$)
 - for 3000 fb⁻¹ \rightarrow 95% CL limit on $\sigma(pp \rightarrow H) \times BR(H \rightarrow J/\psi \gamma)$ is $\sim 15 \times SM$

ATLAS-PHYS-PUB-2015-043

Integrated luminosity	Expected limit on σ(pp→H)×BR (H→J/ψγ) [fb]
300 fb ⁻¹	8.6 ^{+2.4} _{-3.7}
3000 fb ⁻¹	2.5 ^{+0.7} -1.0

- → ATLAS and CMS working on Run 2 extrapolation for HL-LHC (3000 fb⁻¹ @ 14 TeV)
 - very significant improvement in b-tagging performance expected for HL-LHC (ATLAS and CMS Technical Design Reports)
- Implication of systematic uncertainties in extrapolation
 - signal and background modeling systematics currently dominant in Run 2 (e.g.V+jets and tt modeling)
 - experimental uncertainties (b-tagging, JES/JER)
 - Prospect studies on Run I extrapolation at 3000 fb⁻¹ by ATLAS ($<\mu>=140$) $\rightarrow \sim 9.6\sigma$ significance (10% and 5% of the JES uncertainty for Scenario I and II)

ATLAS_PHYS_PUB_2014_011

ATLAC				
ATLAS ===		One-lepton	Two-lepton	One+Two-lepton
Stat-only	Significance	15.4	11.3	19.1
	$\hat{\mu}_{ ext{Stats}}$ error	+0.07 - 0.06	+0.09 - 0.09	+0.05 - 0.05
Theory-only	$\hat{\mu}_{ ext{Theory}}$ error	+0.09 - 0.07	+0.07 -0.08	+0.07 - 007
	Significance	2.7	8.4	8.8
Scenario I	$\hat{\mu}_{ ext{w/Theory}}$ error	+0.37 - 0.36	+0.15 - 0.15	+0.14 - 0.14
	$\hat{\mu}_{ ext{wo/Theory}}$ error	+0.36 - 0.36	+0.14 - 0.12	+0.12 - 0.12
	Significance	4.7	-	9.6
Scenario II	$\hat{\mu}_{\text{w/Theory}}$ error	+0.23 - 0.22	-	+0.13 - 0.13
	$\hat{\mu}_{ ext{wo/Theory}}$ error	+0.21 - 0.21	-	+0.11 - 0.11

Wrapping-up

- Very rich set of results on charm, bottom and top Yukawa couplings from ATLAS, CMS and LHCb with Run 2 data
 - reached evidence (CMS and ATLAS) of $H \rightarrow bb$ and ttH top-Yukawa couplings ($H \rightarrow bb$, $H \rightarrow multi-lepton$, $H \rightarrow \chi \chi$ and $H \rightarrow ZZ^* \rightarrow 4l$), search for boosted $H \rightarrow bb$ (CMS)
 - charm couplings currently extracted from $H \rightarrow J/\psi \gamma$ (Run I analysis) and $VH \rightarrow cc$ (LHCb and ATLAS)
- Results for top and bottom Yukawas for HL-LHC are getting available
 - analyses mostly rely on Run 2 extrapolation with dedicated set of systematic uncertainties
 - most of the couplings will reach very good precision at HL-LHC
- → ATLAS, CMS and LHCb also working on prospect studies for VH→cc
 - ATLAS and CMS focus on extrapolation studies from Run 2 analysis at 3000 fb⁻¹ @ 14 TeV
 - additional studies on LHCb not based on Run 2-extrapolation
- Impact of systematics uncertainties need to be accounted for in these prospect studies
 - implication of advanced experimental reconstruction techniques and corresponding uncertainties may change the picture quite a bit

Additional stides

The High-Luminosity LHC program

LHC / HL-LHC Plan

Now ($\sqrt{s}=13$ TeV), $\langle \mu \rangle \sim 38$ (2017 data-taking)

	Peak luminosity (cm ⁻² s ⁻¹)	μ (pile-up)
Current	1.3 · 10 ³⁴	25
HL-LHC baseline	5 · 10 ³⁴	140
HL-LHC ultimate	7.5 · 10 ³⁴	200

Phase-II Atlas and CMS Upgrade

- Increased instantaneous luminosity and mean number of interactions per bunch-crossing (pile-up)
- Integrated luminosity collected during HL-LHC ~ 3000 fb⁻¹
- Precision measurements on the Higgs sector (couplings, selfcouplings, VBF production), raredecays

HL-LHC environment and object performance

Very challenging environment at HL-LHC → detector requirements to maximize benefits from high luminosity

- large integrated radiation dose
- mitigation of pile-up effects
- sustain large event rate with more sophisticated trigger and data acquisition systems
- ✓ Important to keep good control over performance of physics objects (identification and reconstruction, background rejection)
 - track resolution, pile-up jet rejection, background rejection for b-tagging, identifications of electrons and photons

ATL-PHYS-PUB-2016-026

Systematic uncertainties

Uncertainty source	Δ	.μ
tt + > 1b modeling	+0.46	-0.46
Background-model stat. unc.	+0.29	-0.31
b-tagging efficiency and mis-tag rates	+0.16	-0.16
Jet energy scale and resolution	+0.14	-0.14
$t \bar{t} H \text{ modeling}$	+0.22	-0.05
$t\bar{t} + \geq 1c \text{ modeling}$	+0.09	-0.11
JVT, pileup modeling	+0.03	-0.05
Other background modeling	+0.08	-0.08
$t\bar{t} + \text{light modeling}$	+0.06	-0.03
Luminosity	+0.03	-0.02
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t} + \geq 1b$ normalization	+0.09	-0.10
$t\bar{t} + \geq 1c$ normalization	+0.02	-0.03
Intrinsic statistical uncertainty	+0.21	-0.20
Total statistical uncertainty	+0.29	-0.29
Total uncertainty	+0.64	-0.61

- Analysis is largely systematicslimited (~62% total uncertainty on the ttH signal strength)
 - main source is tt+≥ I b modeling
 - large contributions on available Monte Carlo statistics
 - mostly relevant for the largest systematics uncertainties (tt+≥ lb)
 - experimental uncertainties contributing less, b-tagging and jet energy scale/resolution
- ✓ Work ongoing to reduce the dominant tt+HF uncertainty
 - data-driven approaches to estimate tt+HF component
 - SM g→bb cross section measurement

Signal and control region - single lepton

- Requirements on b-tagging discriminants for jets in the event defined to split phase-space and create signal and control region (≥ 5 jets and ≥ 6 jets)
 - control regions (CR) enriched in reducible background
 - signal region (SR) enriched in signal and reducible background (tt+ \geq 1b)
 - signal purity in ultra-pure signal region: 1.6-5.3%
 - highest purity regions in single lepton ≥6j with 4b very tight b-tags

control region dominated in tt+≥ Ic and tt+light and created by loosening requirements on b-

CMS results ttH(Hbb)

Uncertainty source	$\pm \sigma_{\mu}$ (observed)
total experimental	+0.15/-0.16
b tagging	+0.11/-0.14
jet energy scale and resolution	+0.06/-0.07
total theory	+0.28/-0.29
tī+hf cross-section and parton shower	+0.24/-0.28
size of MC samples	+0.14/-0.15
total systematic	+0.38/-0.38
statistical	+0.24/-0.24
total	+0.45/-0.45

CMS results ttH(ML)

tth(H->ZZ*, WW*, TT) - backgrounds (ATLAS)

- ✓ Prompt-leptons or T-jets estimated from MC
 - irreducible: ttW, ttZ and diboson
- ✓ Electron charge misidentification
 - data-driven estimate from misidentification rate in $Z \rightarrow e+e-vs Z \rightarrow e+e+/Z \rightarrow e-e-$
- √ Fake or non-prompt light leptons
 - semileptonic b-hadron decays and photon conversions
 - data-driven estimation
- √ Fake hadronic taus
 - light-flavour jets and electron misidentified as taus
 - data-driven estimation in CR; extrapolation to SR
- √ New important reconstruction techniques
 - lepton reconstruction
 - ▶ BDT to mitigate charge misidentification
 - BDT to mitigate non-prompt e/μ

LLH(H->ZZ*, WW*, TT) - fils

√ 8 signal regions and 4 control regions treated with BDT shape or 1-bin (BDT trained against dominant background of a given region)

VHbb - background modeling uncertainty @ ATLAS/CMS

- → Monte Carlo for description of signals and background (multi-jet is data-driven)
 - uncertainties are extrapolated across regions and parametrized as uncertainties on ratio of yields
 - Shape uncertainties on BDT output are extracted for m(bb) and pt(V)
- Uncertainties derived on comparison of MC generators for background processes or data/MC checks in analysis control regions
 - no large overconstraints of background nuisance parameters

- Similar approach to evaluate uncertainties on background modeling in CMS
 - comparison of different MC generators shape systematics extracted as difference of BDT shapes
 - for V+jets, the difference between shapes using MadGraph5_aMC@NLO at LO and NLO are considered
 - for ttbar, difference in shape between nominal Powheg vs MC@NLO
 - variations of internal scales (QCD/PDF scales)

