Higgs @ LHeC

Uta Klein

on behalf of

the LHeC/FCC-eh Higgs Group

He electrons for LHC: ERL + LHC

- Two Electron LINACs + 3 return arcs: using energy recovery in same structure: 'green' technology with power consumption < 100 MW: nominal $E_e = 60 \text{ GeV}$
- Beam dump: no radioactive waste!
- high electron polarisation of 80-90%
- Installation decoupled from LHC operation

Concurrent ep and HL-LHC
operation!
Same idea holds for HE-LHC and
FCC-hh

- ep Lumi 10³⁴ cm s⁻² s⁻¹ **
- 100 fb⁻¹ per year, e.g. ~2030-2040 (HL-LHC)
- L= 1000 fb⁻¹ total collected in 10 years
- eA luminosity estimates ~ 10³³ cm s⁻² s⁻¹ eA

** based on existing HL-LHC proposal

LHeC CDR: arXiv:1206.2913 and updates at LheC/FCC-eh WS@CERN, 9/17

Detector Design

for HL+HE+FCC ep Peter Kostka et al. → installation in 2 years, e.g. during LS4

VBF Higgs Production in ep (top)

and pp (bottom)

ep: Higgs production in ep comes uniquely from either CC or NC DIS via VBF

Clean final states, e.g. Hbb with S/B >1 e-h Cross Calibration for Precision ep Clean, precise reconstruction and easy distinction of ZZH and WWH without pile-up:

<0.1@LHeC up to 1@FCCeh events

VBF: Small theoretical uncertainties!

pp: Higgs production in pp comes predominantly from gg→ H:
 high rates crucial for rare decays
 LHC VBF cross section about 200 fb (about as large as at the LHeC).

Pile-up in pp at 5 10^{34} cm⁻² s⁻¹ is 150@25ns **FCC-hh: pile-up 500-1000** S/B very small for bb **Final Precision in pp needs accurate N³LO PDFs & \alpha_s**

Analysis Framework and 'Detector'

Event generation

- SM or BSM production
- CC & NC DIS background

by MadGraph5/MadEvent

- Fragmentation
- Hadronization

by PYTHIA (modified for ep)

Fast detector simulation

by Delphes

> test of LHeC detector

S/B analysis → cuts or BDT

- Calculate cross section with tree-level Feynman diagrams (any UFO) using <u>pT of scattered quark</u> <u>as scale (CDR ŝ)</u> for ep processes with <u>MadGraph5</u>
- Higgs mass 125 GeV as default
- Fragmentation & hadronisation uses epcustomised Pythia.
- Delphes 'detector' → displaced vertices and signed impact parameter distributions → studied for LHeC, and used for FCC-eh SM Higgs extrapolations
- 'Standard' GPD LHC-style detectors used and further studied based on optimising Higgs measurements, i.e. vertex resolution a la ATLAS IBL of ~ 5 μm, excellent hadronic and elmag resolutions using 'best' state-of-the art detector technologies (no R&D 'needed')

LHeC Detector for the HL/HE-LHC

[arXiv:1802.04317]

Length x Diameter: LHeC (13.3 x 9 m^2) HE-LHC (15.6 x 10.4) FCCeh (19 x 12)

ATLAS (45 x 25) CMS (21 x 15): [LHeC < CMS, FCC-eh ~ CMS size]

If CERN decides that the HE LHC comes, the LHeC detector should anticipate that

Branching for invisible Higgs Update of values given in case of 2σ and L=1 ab⁻¹

Satoshi Kawaguchi, Masahiro Kuze Tokyo Tech

Delphes detectors	LHeC 1.3 TeV	HE-LHC 1.8 TeV
LHC-style	4.7%	3.2%
First 'ep-style'	5.7%	
+BDT Optimisation	5.5% (4.5%*)	3.4% (2.9%*)

- Uses ZZH fusion process to estimate prospects of Higgs to invisible decay using standard cut and BDT analysis techniques
- Results for full MG5+Delphes analyses look very encouraging for a measurement of the branching of Higgs to invisible in ep down to 5-3% (1.2% for 2 ab⁻¹ for FCC-he @ 3.5 TeV)
- \checkmark We also checked LHeC $\leftarrow \rightarrow$ FCC-he scaling with the corresponding cross sections (* results in table from down scaled FCC-he simulation) → all well within uncertainties of projections of ~25%
- employ further synergies within LHC and HL-LHC&FCC (HE) community further detector and analysis details have certainly an impact on results

LHeC@HL-LHC: Higgs rates @ 1 ab⁻¹

Baseline: Realistic option of an 1 ab⁻¹ ep collider (stronger e-source, stronger focussing magnets) and excellent performance of LHC (higher brightness of proton beam) → full MG5 + Pythia + Delphes feasibility studies

√s= 1.3 TeV	LHeC Higgs	$CC(e^-p)$	$NC(e^-p)$	$CC(e^+p)$
73 213 101	Polarisation	-0.8	-0.8	0
	Luminosity $[ab^{-1}]$	1	1	0.1
	Cross Section [fb]	196	25	58
	Decay BrFraction	$N_{CC}^{H} e^{-}p$	$N_{NC}^{H} e^{-}p$	$N_{CC}^{H} e^{+}p$
	$H \to b\overline{b}$ 0.577	113 100	13 900	3 350
	$H \to c\overline{c}$ 0.029	5 700	700	170
	$H \rightarrow \tau^+ \tau^- 0.063$	12 350	1 600	370
	$H \to \mu\mu$ 0.00022	50	5	_
	$H \rightarrow 4l$ 0.00013	30	3	_
pp: perfect	$H \rightarrow 2l2\nu$ 0.0106	2 080	250	60
Higgs	$H \rightarrow gg$ 0.086	16 850	2 050	500
factory for	$H \rightarrow WW = 0.215$	42 100	5 150	$1\ 250$
gluon-	$H \rightarrow ZZ$ 0.0264	5 200	600	150
induced	$H \to \gamma \gamma$ 0.00228	450	60	15
rare decays	$H \to Z\gamma$ 0.00154	300	40	10

Ultimate polarised e-beam of <u>60 GeV</u> and LHC 7 TeV pbeams, 10 years of operation

→ Decay to bb is dominating decay mode:

Higgs decay to charm is factor 20 less likely than Hbb

Dijet Mass Candidates HFL untagged

'Worst' case scenario plot : Photoproduction background (PHP) is assumed to be 100%!

The Krein, Higgs Wern addition of small angle electron taggers will reduce PHP to ~1-2%

New: Estimates of Higgs Prospects

- Use LO Higgs cross sections σ_H for M_H =125 GeV, in [fb], and branching fractions BR(H \rightarrow XX from Higgs Cross Section Handbook (c.f. appendix)
- Apply further branching, BR(X \rightarrow FS) in case e.g. of W \rightarrow 2 jets and use acceptance, Acc, estimates based on MG5, for further decay
- Use reconstruction efficiencies, ε, achieved at LHC Run-1, see e.g. prospect calculations explored in arXiV:1511.05170
- Use fully simulated LHeC Hbb and Hcc results as baseline for S/B ranges
- Use fully simulated Higgs to invisible for 3 ep c.m.s. scenarios as guidance for extrapolation uncertainty (~25%)
- Estimate HIggs events per decay channel for certain Luminosity in [fb-1]

$$N = \sigma_H \bullet BR(H \to XX) \bullet BR(X \to FS) \bullet L$$

Calculate uncertainties of signal strengths w.r.t. SM expectation μ

$$\frac{\delta\mu}{\mu} = \frac{1}{\sqrt{N}} \bullet f \quad \text{with} \quad f = \sqrt{\frac{1 + 1/(S/B)}{Acc \bullet \varepsilon}}$$

LHeC: Signal Strengths

L=1 ab⁻¹, running in parallel to HL-LHC

Signal Strengths @ LHeC - HE-LHeC - FCCeh

Charged Currents: $ep \rightarrow vHX$ **Neutral Currents**: $ep \rightarrow eHX$

Note: CC (HWW)and NC (HZZ) data are taken at once in DIS (requires different e+e- machine settings for high precision)

→NC and CC DIS together over-constrain Higgs couplings in a combined fit.

Higgs Couplings

 M_H =125 GeV Γ_H =4.088 MeV

	bb	ww	gg	ττ	СС	ZZ	γγ
BR 2016	0.5824	0.2137	0.08187	0.06272	0.02891	0.02619	0.00227
(BR2014)	(0.577)	(0.215)	(0.086)	(0.0632)	(0.0291)	(0.0264)	(0.00228)

CC DIS: $WW \rightarrow H \rightarrow i i$ (decay into FS i as listed in the table)

$$\sigma_{WW\to H\to ii} = \sigma_{WW\to H} \cdot br_i \propto \sigma_H^{SM} \cdot br_i^{SM} \cdot \kappa_W^2 \cdot \kappa_i^2 \cdot \frac{\Gamma}{\sum_i \kappa_i^2 \Gamma_i}$$

NC DIS: $ZZ \rightarrow H \rightarrow i i$ (decay into FS i as listed in the table)

$$\sigma_{ZZ\to H\to ii} = \sigma_{ZZ\to H} \cdot br_i \propto \sigma_H^{SM} \cdot br_i^{SM} \cdot \kappa_Z^2 \cdot \kappa_i^2 \cdot \frac{\Gamma}{\sum_i \kappa_i^2 \Gamma_i}$$

$$\kappa_i^2 = \frac{\Gamma_i}{\Gamma_i^{SM}}$$

$$\sum_i \kappa_i^2 b r_i = rac{\Gamma_{H,\,md}}{\Gamma_H^{SM}}$$
 =1 ?

→ Sum of first 6 branching fractions as listed in table above that could be measured

LHeC : 0.996 + -0.020 [pp: $< 0.99 \rightarrow cc? gg?$]

- → gives model-dependent width ('md') uncertainty using SM branching fractions
- **→** allows a model-dependent fit of coupling uncertainties

Model-dependent Coupling Fit

Higgs in ee vs ep

ee: Dominant Higgs productions

pe vs e+e- Higgs cross sections

 Z^*

... and Consistency Checks of EW Theory

→ similar tests possible using various cms energy CLIC machines, however, in ep, we could perform them with one machine

$$\frac{\sigma_{WW \to H \to ii}}{\sigma_{ZZ \to H \to ii}} = \frac{\kappa_W^2}{\kappa_Z^2}$$

$$\frac{\kappa_W}{\kappa_Z} = \cos^2 \theta_W = 1 - \sin^2 \theta_W$$

- → Dominated by H→bb decay channel precision
- Very interesting consistency check of EW theory

Values for cos²Θ given here are the PDG value as central value
 0.777 and uncertainty from ep Higgs measurement prospects

LHeC:

$$\pm$$
 0.010

 HE-LHeC
 \pm 0.006

 FCC-eh
 \pm 0.004

→ Another nice test: How does the Higgs couple to 3rd and 2nd generation quark?

b is down-type and c is up-type

$$\frac{\sigma_{WW\to H\to c\bar{c}}}{\sigma_{WW\to H\to b\bar{b}}} = \frac{\kappa_c^2}{\kappa_b^2}$$

Measure CP Properties of Higgs

[CDR before Higgs discovery $M_H = 120$ GeV, $E_D = 7$ TeV]

- Higgs couplings with a pair of gauge bosons (WW/ZZ) and a pair of heavy fermions $(t/b/\tau)$ are largest.
- Higgs@LHeC allows uniquely to access HWW vertex \Rightarrow explore the CP properties of HVV couplings: BSM will modify CP-even (λ) and CP-odd (λ ') states differently

• Study *shape changes* in DIS normalised CC Higgs \rightarrow bb cross section versus the azimuthal angle, $\Delta \varphi_{MET,J}$, between $E_{T,miss}$ and forward jet.

CDR initial study of HWW vertex:

CP couplings probed to λ~0.05

λ'~0.2

based on 50 fb⁻¹

→ Todo: full detector, 125 GeV Higgs study

CP Nature of Top-Higgs Coupling

$$\mathcal{L} = -\frac{m_t}{v}\bar{t}\left[\kappa\cos\zeta_t + i\gamma_5\sin\zeta_t\right]th$$

LHeC

rapidity difference (H,\bar{t})

0.1 scalar (flipped sign) 0.08 Fop Polarization scalar xture (SM) 0.04 pseudo-0.02 scalar 0.5 1.5 2.5 3 Δy_{ht}

 $1/\sigma \ d\sigma/d(\Delta y_{ht})$

top polarisation

angular asymmetries (b₂,l⁻)

Exclusion Contours (fiducial cross section)

...to take home: ep+pp in 2030-40

- LHeC could measure the dominant Higgs couplings to 0.5-3% precision [CC+NC, no pile-up, clean final state..].
- This turns the LHC (ep+pp) into a very powerful Higgs facility, including a strong Higgs BSM potential (H→ invisible, ttH..)
- The LHeC would empower the physics potential of the HL LHC (searches, Higgs..) through high precision QCD measurements: flavour separated PDFs at N³LO, α_s to per mille ...

Uncertainty on pp Higgs cross section

Gi. Zanderighi, Vietnam 9/16, from C.Anastasiou et al, 1602.00695 who also discuss the ABM alpha_s..

Already with the first ~100 fb⁻¹ LHeC data (first few years)

- \rightarrow use ep as the 'near' detector for pp to beat the α_s and PDF uncertainties for Higgs@LHC from ~3% to <~0.5%,
- $\rightarrow \delta m_b$ to 10 MeV; δm_{charm} to 3 MeV

Workshops

Recent: September 2017
https://indico.cern.ch/event/639067/

Next: 27-29 June 2018 Orsay
https://indico.cern.ch/event/698368/
Preparation for strategy:
Physics, Accelerator, Detector, PERLE

Many eh related workshops
FCC: Physics week (CERN Jan 2018)
and in April 2018 (Amsterdam)
POETIC in March (Regensburg)
DIS 2018 in April (Kobe)
HL-HE LHC Physics June 2018 (CERN)
which includes ep/eA

https://lhec.web.cern.ch

Additional Sources & Thanks to

- Much more material can be found here: LHeC and FCC-eh Workshop, September 2017, CERN https://indico.cern.ch/event/639067/
- The LHeC/FCC-eh study group, http://cern.ch/lhec.
- "On the Relation of the LHeC and the LHC" [arXiv:1211.5102]
- 1st FCC Physics Workshop, 16.1.-20.1.2017, CERN https://indico.cern.ch/event/550509/
- Before April 2018: Higgs branching fractions and uncertainties taken from https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ CERNYellowReportPageBR2014
- Update used from April 2018
 https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR

Special thanks to my colleagues in the LHeC/FCC-eh Higgs group and to Jorge de Blas for the discussion of model-dependent coupling fits.

Additional material

Double Higgs Production

FCC-eh study

 1σ for SM hhh for E_e 60 (120)GeV and $10ab^{-1}$

$$g_{hhh}^{(1)} = 1.00_{-0.17(0.12)}^{+0.24(0.14)}$$

Probing anomalous couplings: limits are obtained by scanning one of the non-BSM coupling while keeping other couplings to their SM values.

→ explore LHeC/HL-LHC ep prospects! CLIC-1.4TeV: δg_{HHH} ~40-50%

Here $g_{(\cdots)}^{(i)}$, i = 1, 2, and $\tilde{g}_{(\cdots)}$ are real coefficients corresponding to the CP-even and CP-odd couplings respectively, of the hhh, hWW and hhWW anomalous vertices.

SM Higgs Production in ep

Total cross section [fb]

(LO QCD CTEQ6L1 M_H =125 GeV)

c.m.s. energy	1.3 TeV LHeC	3.5 TeV FCC-he
CC DIS NC DIS	109 21	560 127
P=-80% CC DIS UNG RIPHS Higgs @ LHeC	196 25	1008 148

- → In ep, direction of quark (FS) is well defined.
 - •Scale dependencies of the LO calculations are in the range of 5-10%.
 - NLO QCD corrections are small, but shape distortions of kinematic distributions up to 20%. QED corrections up to -5%.

[J. Blumlein, G.J. van Oldenborgh, R. Ruckl, Nucl.Phys.B395:35-59,1993]
[B.Jager, arXiv:1001.3789]

SM Higgs Decay into b-quarks

Typical background processes

Invisible Higgs@LHeC

relating the Higgs and the 'dark' sectors

Y.-L. Tang et al., arXiv: 1508.01095

HL-LHC @ 3 ab⁻¹ [arXiv:1411. 7699]

$${
m Br}(h o E_T)$$
 < 3.5% @95% C.L., MVA based

For **LHeC**, assume : 1ab⁻¹, P_e=-0.9, <u>cut based</u>

$$\operatorname{Br}(h \to \not\!\!E_T)$$
 < 6% @ 95 % C.L.

$$C_{\text{MET}}^2 = \kappa_Z^2 \times \text{Br}(h \to E_T)$$

- → potential much enhanced for FCC-eh @ 3.5 TeV and HE-LHC-eh @ 1.8 TeV
- → NEW studies performed on Delphes detector-level using our Madevent framework

LHeC Precision Partons for Higgs@pp

- → <u>Using LHeC input</u>: experimental uncertainty of predicted <u>LHC Higgs</u>
- cross section due to PDFs and α_s is strongly reduced to <~0.5%
- → theoretically clean path to determine N³LO PDFs using ep DIS
- → ALL those 'benefits' for pp within the first few years, using ~100 fb⁻¹ ep data

 NNLO pp-Higgs Cross Sections at 14 TeV

 \rightarrow precision from LHeC can add a very significant constraint on the Higgs mass and challenge Lattice QCD calculations for α_s :

SM Higgs into HFL Summary

- Assume a 60 GeV polarized electron beam and 1000 fb⁻¹ (~10 years running)
- Expected number of signal events and error of coupling constant from BDT results.
- Background assumed to be known to ~2%

Expected number of signal events

$$(E_e = 60 \text{ GeV})$$

FCC ep (~85,000 H→bb events)

DLHC (~35,000 H→bb events)

LHeC (~15,000 H→bb events)

Energy of electron (GeV)

		LHeC	DLHC	FCC ep
$\delta \kappa = \frac{1}{2} \frac{\delta \mu}{2}$		$(E_p = 7 \text{ TeV})$	$(E_p = 14 \text{ TeV})$	(E _p = 50 TeV
$o\kappa = \frac{1}{2}u$		√s ~1.3 TeV)	√s ~1.8 TeV)	√s ~ 3.5 TeV)
–	κ (Hbb)	0.5%	0.3%	0.2%
	κ (Hcc)	4%	2.8%	1.8%

Uta Klein & **Daniel Hampson**

HFL Tagging

- → Realistic and conservative HFL tagging within Delphes realised, and dependence on vertex resolution (nominal 10 μm) and anti-kt jet radius studied
- → Light jet rejection very conservative, i.e. factor 10 worse than ATLAS
- → used in full LHeC analysis and for FCC-eh extrapolations

Uta Klein & Daniel Hampson

0.2

Signal Events Hbb

Hbb: Clear sensitivity to chosen jet radius; rather robust w.r.t. vertex resolution in range of 5 to 20 μm

-0.1

Hcc: High sensitivity to vertex resolution (nominal 10 μm) and jet radius

0.1

→ expect about 400-600 Hcc candidates

0.3

BDT Cut

LHeC/FCC ep/eA detector

Detector fits in L3 magnet support

Study to fit into LHC shutdown needs directed to IP2 Andrea Gaddi et al

LHeC INSTALLATION SCHEDULE

Modular structure

LHC: First 3_o Hbb Evidence!

ATLAS, Aug 2017, sub. to JHEP

https://arxiv.org/abs/1708.03299

- use Higgs → bb in associated production with a W or Z boson
- explore various final states (e.g. $Z \rightarrow vv$, $W \rightarrow lv$, $Z \rightarrow ll$ categories)
- Run-I and II combined, S/B-weighted categories : μ=0.9±0.28(stat+syst)

- Encouraging result for HL-LHC prospects
- ✓ Very encouraging for prospects in ep that we can handle S/B ~10⁻³ processes with sophisticated analysis techniques

Hbb expectation @ LHeC for 36 fb⁻¹ (½ year data): $\delta\mu^{\sim}7-8\%$ with significance of ~14