EW Phase Transition: Di-Higgs & Higgs Precision

M.J. Ramsey-Musolf U Mass Amherst

http://www.physics.umass.edu/acfi/

A. Kotwal, L. Niemi, J. No, H. Patel, T. Tenkanen, D. Weir, P. Winslow

FNAL HL/HE-LHC Workshop April 2018

Electroweak Phase Transition

- Higgs discovery → What was the thermal history of EWSB ?
- Baryogenesis → Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
- Gravitational waves → If a signal observed in LISA, could a cosmological phase transition be responsible ?

Electroweak Phase Transition

- Higgs discovery → What was the thermal history of EWSB ?
- Baryogenesis → Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
- Gravitational waves → If a signal observed in LISA, could a cosmological phase transition be responsible ?

EW Baryogenesis & Gravitational Waves

Was Y_B generated in conjunction with electroweak symmetry-breaking?

- Was the EWSB transition first order ?
- Was it sufficiently "strong"?

Themes for This Talk

- I. Future collider opportunities
 - Phenomenological studies to date indicate high potential for probing the nature of the EWPT
- II. Complementarity
 - Di-Higgs + precision Higgs coupling measurements needed for a complete probe

Outline

- I. EWPT
- II. Future collider discovery potential
- III. Summary

I. Electroweak Phase Transition

EW Phase Transition: St'd Model

Increasing m_h

Lattice	Authors	$M_{\rm h}^C~({ m GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

EW Phase Diagram

SM EW: Cross over transition

EW Phase Transition: St'd Model

Increasing m_h

Lattice	Authors	$M_{\rm h}^C~({ m GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

Temperature I25 GeV Higgs Mass

EW Phase Diagram

Extended scalar sector: FOEWPT for $m_h = 125 \text{ GeV}$

SM EW: Cross over transition

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet: 🗙	1	~	*
Real singlet: Z_2	1	~	~
Complex Singlet	2	~	~
EW Multiplets	3+	~	~

May be low-energy remnants of UV complete theory & illustrative of generic features

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet:	1	 ✓ 	*
Real singlet: Z ₂	1	~	~
Complex Singlet	2	~	~
EW Multiplets	3+	~	~

May be low-energy remnants of UV complete theory & illustrative of generic features

II. Discovery Potential

Standard Model + real singlet scalar

$$V_{\rm HS} = \frac{a_1}{2} \left(H^{\dagger} H \right) S + \frac{a_2}{2} \left(H^{\dagger} H \right) S^2$$

• Strong first order EWPT

• Two mixed singlet-doublet states

SFOEWPT-viable parameters

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442

SFOEWPT Benchmarks: Resonant di-Higgs

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442

Modified Higgs Self-Coupling

Chen, Kozaczuk, Lewis 1704.05844 100 TeV pp

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet: 🗙	1	~	*
Real singlet: Z ₂	1	~	~
Complex Singlet	2	r	~
EW Multiplets	3+	~	~

May be low-energy remnants of UV complete theory & illustrative of generic features

EW Multiplets: Two-Step EWPT

EW Multiplets: Real Triplet

EW Multiplets: Real Triplet

EW Multiplets: Two-Step EWPT

Using BR(H \rightarrow ZZ*) from FCC-ee (known at ~0.3% from δg_{HZZ} ~0.15%), production ratios $\sigma(H\rightarrow XY)/\sigma(H\rightarrow ZZ^*)$ for $p_T>100$ GeV return the following stat precision on the **absolute value** of rare BRs

Summary

- Initial phenomenological studies indicate HL/HE LHC + other future colliders will have high potential for probing the nature of the EWSB transition & determining whether conditions existed for EW baryogenesis
- Resonant & non-resonant di-Higgs production and precision Higgs studies provide powerful, complementary probes
- Exciting opportunities exist for more theoretical & experimental investigation of the collider/EWPT interface

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet: 🗙	1	~	*
Real singlet: Z ₂	1	~	~
Complex Singlet	2	r	~
EW Multiplets	3+	~	~

May be low-energy remnants of UV complete theory & illustrative of generic features

EWPT & Dark Sector: EW Multiplets

Cirelli & Strumia '05

Quanti	ım num	bers	DM can	DM mass	$m_{\rm DM^{\pm}} - m_{\rm DM}$	Events at LHC	$\sigma_{\rm SI}$ in
$SU(2)_L$	$U(1)_Y$	Spin	decay into	in TeV	in MeV	$\int \mathcal{L} dt = 100/\text{fb}$	$10^{-45}\mathrm{cm}^2$
2	1/2	0	EL	0.54 ± 0.01	350	$320 \div 510$	0.2
2	1/2	1/2	EH	1.1 ± 0.03	341	$160 \div 330$	0.2
3	0	0	HH^*	2.0 ± 0.05	166	$0.2 \div 1.0$	1.3
3	0	1/2	LH	2.4 ± 0.06	166	$0.8 \div 4.0$	1.3
3	1	0	HH, LL	1.6 ± 0.04	540	$3.0 \div 10$	1.7
3	1	1/2	LH	1.8 ± 0.05	525	$27 \div 90$	1.7
4	1/2	0	HHH^*	2.4 ± 0.06	353	$0.10 \div 0.6$	1.6
4	1/2	1/2	(LHH^*)	2.4 ± 0.06	347	$5.3 \div 25$	1.6
4	3/2	0	HHH	2.9 ± 0.07	729	$0.01 \div 0.10$	7.5
4	3/2	1/2	(LHH)	2.6 ± 0.07	712	$1.7 \div 9.5$	7.5
5	0	0	(HHH^*H^*)	5.0 ± 0.1	166	≪ 1	12
5	0	1/2	—	4.4 ± 0.1	166	$\ll 1$	12
7	0	0	_	8.5 ± 0.2	166	$\ll 1$	46

EWPT & Dark Sector: EW Multiplets

Cirelli & Strumia '05

Quanti	ım num	bers	DM can	DM mass	$m_{\rm DM^{\pm}} - m_{\rm DM}$	Events at LHC	$\sigma_{\rm SI}$ in
$SU(2)_L$	$U(1)_Y$	Spin	decay into	in TeV	in MeV	$\int \mathcal{L} dt = 100/\text{fb}$	$10^{-45}\mathrm{cm}^2$
2	1/2	0	EL	0.54 ± 0.01	350	$320 \div 510$	0.2
2	1/2	1/2	EH	1.1 ± 0.03	341	$160 \div 330$	0.2
3	0	0	HH^*	2.0 ± 0.05	166	$0.2 \div 1.0$	1.3
3	0	1/2	LH	2.4 ± 0.06	166	$0.8 \div 4.0$	1.3
3	1	0	HH, LL	1.6 ± 0.04	540	$3.0 \div 10$	1.7
3	1	1/2	LH	1.8 ± 0.05	525	$27 \div 90$	1.7
4	1/2	0	HHH^*	2.4 ± 0.06	353	$0.10 \div 0.6$	1.6
4	1/2	1/2	(LHH^*)	2.4 ± 0.06	347	$5.3 \div 25$	1.6
4	3/2	0	HHH	2.9 ± 0.07	729	$0.01 \div 0.10$	7.5
4	3/2	1/2	(LHH)	2.6 ± 0.07	712	$1.7 \div 9.5$	7.5
5	0	0	(HHH^*H^*)	5.0 ± 0.1	166	$\ll 1$	12
5	0	1/2	—	4.4 ± 0.1	166	$\ll 1$	12
7	0	0	_	8.5 ± 0.2	166	≪ 1	46

Theory Meets Phenomenology

A. Non-perturbative

- Most reliable determination of character of EWPT & dependence on parameters
- Broad survey of scenarios & parameter space not viable
- **B.** Perturbative
 - Most feasible approach to survey broad ranges of models, analyze parameter space, & predict experimental signatures
 - Quantitative reliability needs to be verified

EWPT & Perturbation Theory

Expansion parameter

SM lattice studies: $g_{eff} \sim 0.8$ in vicinity of EWPT for $m_H \sim 70$ GeV

EWPT & Perturbation Theory (PT)

Lessons from St'd Model

- No cross over transition or endpoint of FOEWPT seen in PT
- PT underestimates the critical temp
- PT seems to get trends with parameters correct

EWPT & Perturbation Theory (PT)

Takeaways

- Perturbative studies of EWPT properties may yield qualitatively realistic results but are not unlikely to be quantitatively reliable
- Non-perturbative studies also face limitations: challenging to study broad range of models & parameters, and (so far) limited information on whether or not FOEWPT is sufficiently strong for EWBG **
- Future theoretical work: interfacing PT w/ non-pert studies ("benchmarking") & improving PT

^{**} However, see G. Moore '99 for non-pert SM sphaleron rate calc

Meeting ground: 3-D high-T effective theory

Meeting ground: 3-D high-T effective theory

- Assume BSM fields are "heavy" or "supeheavy" : integrate out
- Effective "SM-like" theory parameters are functions of BSM parameters
- Use existing lattice computations for SM-like effective theory & matching onto full theory to determine FOEWPT-viable parameter space regions

Meeting ground: 3-D high-T effective theory

- Assume BSM fields are "heavy" or "supeheavy" : integrate out
- Effective "SM-like" theory parameters are functions of BSM parameters
- Use existing lattice computations for SM-like effective theory & matching onto full theory to determine FOEWPT-viable parameter space regions

Meeting ground: 3-D high-T effective theory

Meeting ground: 3-D high-T effective theory

Z₂ Singlet: "superheavy"

2HDM: "heavy"

Real triplet: "heavy"

Brauner et al '16

Andersen et al '17

Niemi et al '18 (preliminary)

$$x = \frac{\lambda}{g_3^3} \quad y = \frac{\mu_3^2}{g_3^4}$$

Brauner et al '16

Andersen et al '17

Niemi et al '18 (preliminary)

$$x = \frac{\lambda}{g_3^3} \quad y = \frac{\mu_3^2}{g_3^4}$$

Real Triplet Example: Lessons

- Initial non-perturbative studies using 3d EFT
 reveals region of FOEWPT not evident in PT
- Next generation circular e+e- and pp colliders likely necessary to access this region: a first order transition → Observable shift in h→ γγ rate
- Next generation colliders will have needed sensitivity

Z₂ Singlet: "superheavy"

2HDM: "heavy"

Real triplet: "heavy"

Brauner et al '16

Andersen et al '17

Niemi et al '18 (preliminary)

- BSM fields fields do not play dynamical role in EWSB
- All transitions are single step no multistep transitions occur
- Non-perturbative determination of strength of transition (sphaleron & tunneling rates) remain to be obtained

Need lattice simulations w/ dynamical BSM scalars