EW Phase Transition: Di-Higgs \& Higgs Precision

M.J. Ramsey-Musolf
U Mass Amherst

Amherst Center for Fundamental Interactions mhsics at the interface. Energy, intensity, and Cosmic frontiers
University of Massachusetts Amherst
http://www.physics.umass.edu/acfi/
A. Kotwal, L. Niemi, J. No, H. Patel,
T. Tenkanen, D. Weir, P. Winslow

FNAL HL/HE-LHC Workshop
April 2018

Electroweak Phase Transition

- Higgs discovery \rightarrow What was the thermal history of EWSB?
- Baryogenesis \rightarrow Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
- Gravitational waves \rightarrow If a signal observed in LISA, could a cosmological phase transition be responsible ?

Electroweak Phase Transition

- Higgs discovery \rightarrow What was the thermal history of EWSB?
- Baryogenesis \rightarrow Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
- Gravitational waves \rightarrow If a signal observed in LISA, could a cosmological phase transition be responsible ?

EW Baryogenesis \& Gravitational Waves

Was Y_{B} generated in conjunction with electroweak symmetry-breaking?

- Was the EWSB transition first order ?
- Was it sufficiently "strong"?

Themes for This Talk

I. Future collider opportunities

- Phenomenological studies to date indicate high potential for probing the nature of the EWPT
II. Complementarity
- Di-Higgs + precision Higgs coupling measurements needed for a complete probe

Outline

I. EWPT

II. Future collider discovery potential
III. Summary

I. Electroweak Phase Transition

EW Phase Transition: St'd Model

Increasing m_{h}

Lattice	Authors	$M_{\mathrm{h}}^{C}(\mathrm{GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

SM EW: Cross over transition

EW Phase Diagram

EW Phase Transition: St'd Model

Increasing m_{h}

Lattice	Authors	$M_{\mathrm{h}}^{C}(\mathrm{GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

EW Phase Diagram

Extended scalar sector: FOEWPT for $m_{h}=125 \mathrm{GeV}$

SM EW: Cross over transition

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet: $Z_{又}$	$\mathbf{1}$	\checkmark	\checkmark
Real singlet: Z_{2}	$\mathbf{1}$	\checkmark	\nearrow
Complex Singlet	$\mathbf{2}$	\nearrow	\nearrow
EW Multiplets	$3+$	\nearrow	\nearrow

May be low-energy remnants of UV complete theory \& illustrative of generic features

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet: Z_{χ}	$\mathbf{1}$	\checkmark	\checkmark
Real singlet: Z_{2}	$\mathbf{1}$	\checkmark	\nearrow
Complex Singlet	2	\nearrow	\nearrow
EW Multiplets	$3+$	\nearrow	\nearrow

May be low-energy remnants of UV complete theory \& illustrative of generic features

II. Discovery Potential

Standard Model + real singlet scalar

$$
V_{\mathrm{HS}}=\frac{a_{1}}{2}\left(H^{\dagger} H\right) S+\frac{a_{2}}{2}\left(H^{\dagger} H\right) S^{2}
$$

- Strong first order EWPT
- Two mixed singlet-doublet states

EW Phase Transition: Singlet Scalars

SFOEWPT-viable parameters

EW Phase Transition: Singlet Scalars

Collider probes

- Resonant di-Higgs production
- Precision Higgs measurements
- Non-resonant di-Higgs \& exotic Higgs decays

EW Phase Transition: Singlet Scalars

SFOEWPT Benchmarks: Resonant di-Higgs \& precision Higgs studies

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442

EW Phase Transition: Singlet Scalars

SFOEWPT Benchmarks: Resonant di-Higgs

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442

EW Phase Transition: Singlet Scalars

Modified Higgs Self-Coupling

Profumo, R-M, Wainwright, Winslow: 1407.5342; see also Noble \& Perelstein 0711.3018

EW Phase Transition: Singlet Scalars

Modified Higgs Self-Coupling

Chen, Kozaczuk, Lewis 1704.05844 100 TeV pp

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet: $\mathrm{Z}_{\mathrm{又}}$	$\mathbf{1}$	\checkmark	\checkmark
Real singlet: Z_{2}	$\mathbf{1}$	\checkmark	\nearrow
Complex Singlet	$\mathbf{2}$	\nearrow	\nearrow
EW Multiplets	$3+$	\nearrow	\nearrow

May be low-energy remnants of UV complete theory \& illustrative of generic features

EW Multiplets: Two-Step EWPT

Increasing m_{h}
\longleftarrow New scalars

- Step 1: thermal loops
- Step 2: tree-level barrier

Real Triplet \& EWPT

Real Triplet \& EWPT

EW Multiplets: Real Triplet

Increasing m_{h}
« New scalars

$$
\mathcal{O}_{4}=\lambda_{\phi H} \phi^{\dagger} \phi H^{\dagger} H
$$

EW Multiplets: Real Triplet

Increasing m_{h}
\longleftarrow New scalars

$$
-\frac{h_{j}}{-}-B_{-}^{\Sigma^{+}-\operatorname{mon} \gamma} \begin{gathered}
\text { ingr } \gamma
\end{gathered}
$$

EW Multiplets: Two-Step EWPT

Using BR(H \rightarrow ZZ*) from FCC-ee (known at $\sim 0.3 \%$ from $\delta_{g h z z} \sim 0.15 \%$), production ratios $\sigma(\mathrm{H} \rightarrow \mathrm{XY}) / \sigma\left(\mathrm{H} \rightarrow Z Z^{*}\right)$ for $\mathrm{p}^{\boldsymbol{T}}>100 \mathrm{GeV}$ return the following stat precision on the absolute value of rare BRs
M. Mangano

FCC-ee: < 2\%

$$
\text { on } \delta_{H \gamma y}
$$

Increasing m_{h}
« New scalars

Summary

- Initial phenomenological studies indicate HL/HE LHC + other future colliders will have high potential for probing the nature of the EWSB transition \& determining whether conditions existed for EW baryogenesis
- Resonant \& non-resonant di-Higgs production and precision Higgs studies provide powerful, complementary probes
- Exciting opportunities exist for more theoretical \& experimental investigation of the collider/EWPT interface

Back Up

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet: $\mathrm{Z}_{\mathrm{又}}$	$\mathbf{1}$	\checkmark	\checkmark
Real singlet: Z_{2}	$\mathbf{1}$	\checkmark	\nearrow
Complex Singlet	$\mathbf{2}$	\nearrow	\nearrow
EW Multiplets	$3+$	\nearrow	\nearrow

May be low-energy remnants of UV complete theory \& illustrative of generic features

EWPT \& Dark Sector: EW Multiplets

Cirelli \& Strumia '05

Quantum numbers		DM can	DM mass	$m_{\mathrm{DM}^{ \pm}-m_{\mathrm{DM}}}$ Events at LHC			
$\mathrm{SU}(2)_{\mathrm{L}}$	$\mathrm{U}(1)_{Y}$	Spin	decay into	in TeV	σ_{SI} in		
in MeV	$\int \mathcal{L} d t=100 / \mathrm{fb}$	$10^{-45} \mathrm{~cm}^{2}$					
2	$1 / 2$	0	$E L$	0.54 ± 0.01	350	$320 \div 510$	0.2
2	$1 / 2$	$1 / 2$	$E H$	1.1 ± 0.03	341	$160 \div 330$	0.2
3	0	0	$H H^{*}$	2.0 ± 0.05	166	$0.2 \div 1.0$	1.3
3	0	$1 / 2$	$L H$	2.4 ± 0.06	166	$0.8 \div 4.0$	1.3
3	1	0	$H H, L L$	1.6 ± 0.04	540	$3.0 \div 10$	1.7
3	1	$1 / 2$	$L H$	1.8 ± 0.05	525	$27 \div 90$	1.7
4	$1 / 2$	0	$H H H^{*}$	2.4 ± 0.06	353	$0.10 \div 0.6$	1.6
4	$1 / 2$	$1 / 2$	$\left(L H H^{*}\right)$	2.4 ± 0.06	347	$5.3 \div 25$	1.6
4	$3 / 2$	0	$H H H$	2.9 ± 0.07	729	$0.01 \div 0.10$	7.5
4	$3 / 2$	$1 / 2$	$(L H H)$	2.6 ± 0.07	712	$1.7 \div 9.5$	7.5
5	0	0	$\left(H H H^{*} H^{*}\right)$	5.0 ± 0.1	166	$\ll 1$	12
5	0	$1 / 2$	-	4.4 ± 0.1	166	$\ll 1$	12
7	0	0	-	8.5 ± 0.2	166	$\ll 1$	46

EWPT \& Dark Sector: EW Multiplets

Cirelli \& Strumia '05

Quantum numbers			DM can decay into	$\begin{gathered} \hline \text { DM mass } \\ \text { in } \mathrm{TeV} \end{gathered}$	$\begin{gathered} m_{\mathrm{DM}^{ \pm}}-m_{\mathrm{DM}} \\ \text { in } \mathrm{MeV} \end{gathered}$	$\begin{aligned} & \text { Events at LHC } \\ & \int \mathcal{L} d t=100 / \mathrm{fb} \end{aligned}$	$\begin{gathered} \sigma_{\mathrm{SI}} \text { in } \\ 10^{-45} \mathrm{~cm}^{2} \end{gathered}$
$\mathrm{SU}(2){ }_{\text {L }}$	$\mathrm{U}(1)_{Y}$	Spin					
2	1/2	0	EL	0.54 ± 0.01	350	$320 \div 510$	0.2
2	1/2	1/2	EH	1.1 ± 0.03	341	$160 \div 330$	0.2
3	0	0	H^{*}	2.0 ± 0.05	166	$0.2 \div 1.0$	1.3
3	0	1/2	LH	2.4 ± 0.06	166	$0.8 \div 4.0$	1.3
3	1	0	H $H, L L$	1.6 ± 0.04	540	$3.0 \div 10$	1.7
3	1	1/2	LH	1.8 ± 0.05	525	$27 \div 90$	1.7
4	1/2	0	HHH^{*}	2.4 ± 0.06	353	$0.10 \div 0.6$	1.6
	1/2	1/2	(LHH*)	2.4 ± 0.06	347	$5.3 \div 25$	1.6
4	3/2	0	HHH	2.9 ± 0.07	729	$0.01 \div 0.10$	7.5
4	3/2	1/2	(LHH)	2.6 ± 0.07	712	$1.7 \div 9.5$	7.5
5	0	0	$\left(H H H^{*} H^{*}\right)$	5.0 ± 0.1	166	$\ll 1$	12
5	0	1/2	-	4.4 ± 0.1	166	$\ll 1$	12
7	0	0	-	8.5 ± 0.2	166	$\ll 1$	46

Theory Meets Phenomenology

A. Non-perturbative

- Most reliable determination of character of EWPT \& dependence on parameters
- Broad survey of scenarios \& parameter space not viable
B. Perturbative
- Most feasible approach to survey broad ranges of models, analyze parameter space, \& predict experimental signatures
- Quantitative reliability needs to be verified

EWPT \& Perturbation Theory

Expansion parameter

SM lattice studies: $g_{\text {eff }} \sim 0.8$ in vicinity of EWPT for $m_{H} \sim 70 \mathrm{GeV}$

EWPT \& Perturbation Theory (PT)

Lessons from St'd Model

- No cross over transition or endpoint of FOEWPT seen in PT

- PT underestimates the critical temp

- PT seems to get trends with parameters correct

EWPT \& Perturbation Theory (PT)

Takeaways

- Perturbative studies of EWPT properties may yield qualitatively realistic results but are not unlikely to be quantitatively reliable
- Non-perturbative studies also face limitations: challenging to study broad range of models \& parameters, and (so far) limited information on whether or not FOEWPT is sufficiently strong for EWBG **
- Future theoretical work: interfacing PT w/ non-pert studies ("benchmarking") \& improving PT
** However, see G. Moore '99 for non-pert SM sphaleron rate calc

Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory

Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory

- Assume BSM fields are "heavy" or "supeheavy": integrate out
- Effective "SM-like" theory parameters are functions of BSM parameters
- Use existing lattice computations for SM-like effective theory \& matching onto full theory to determine FOEWPT-viable parameter space regions

Lattice simulations exist

Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory

Lattice simulations exist

- Assume BSM fields are "heavy" or "supeheavy": integrate out
- Effective "SM-like" theory parameters are functions of BSM parameters
- Use existing lattice computations for SM-like effective theory \& matching onto full theory to determine FOEWPT-viable parameter space regions

Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory

Lattice simulations exist

Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory

$\text { superheavy } \uparrow_{\pi T}{\underset{\text { L full }}{ }}^{\mathcal{L}_{\text {fitegrate out }} n>0 \text { modes }}$	- Assume BSM fields are "heavy" or "supeheavy": integrate out
heavy $-g T \quad \sum^{\mathcal{L}_{3}}$ Integrate out A_{0} field	- Effective "SM-like" theory parameters are functions of BSM parameters
	- Use existing lattice computations for SM-like effective theory \& matching onto full theory to determine FOEWPT-viable parameter space regions

Lattice simulations exist

Benchmarking PT: Recent Progress

Brauner et al ' 16

2HDM: "heavy"

(a) $\tan (\beta)=1.5$

Andersen et al '17

Real triplet: "heavy"

Niemi et al '18 (preliminary)

$$
x=\frac{\lambda}{g_{3}^{3}} \quad y=\frac{\mu_{3}^{2}}{g_{3}^{4}}
$$

Benchmarking PT: Recent Progress

Real Triplet Example: Lessons

- Initial non-perturbative studies using 3d EFT reveals region of FOEWPT not evident in PT
- Next generation circular e+e- and pp colliders likely necessary to access this region: a first order transition \rightarrow Observable shift in $h \rightarrow \gamma \gamma$ rate
- Next generation colliders will have needed sensitivity

Benchmarking PT: Recent Progress

Z_{2} Singlet: "superheavy"

Brauner et al '16

2HDM: "heavy"

(a) $\tan (\beta)=1.5$

Andersen et al ' 17

Real triplet: "heavy"

Niemi et al '18 (preliminary)

- BSM fields fields do not play dynamical role in EWSB
- All transitions are single step - no multistep transitions occur
- Non-perturbative determination of strength of transition (sphaleron \& tunneling rates) remain to be obtained

