

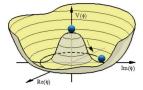
Di-Higgs production and Higgs self-coupling in ATLAS at HL-LHC

Petar Bokan on behalf of the ATLAS collaboration

HL/HE LHC Meeting, Fermilab 4-6 April 2018

Overview

- Higgs self-coupling
- Di-Higgs production at the LHC
- o Run-2 results
- Di-Higgs prospects at the HL-LHC
 - $hh \rightarrow b\bar{b}b\bar{b}$
 - $-\ hh \rightarrow b \bar{b} \gamma \gamma$
 - $-hh \rightarrow b\bar{b}\tau^+\tau^-$

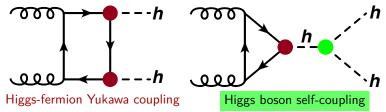

Higgs potential

o Important to measure the shape of the Higgs potential

$$V(\phi) = -\frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda\phi^4$$

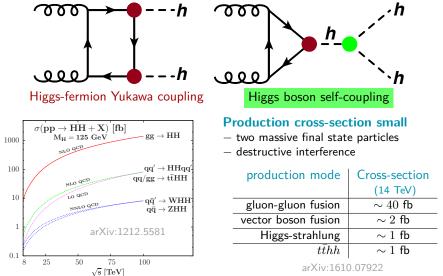
Expanding about minimum: $V(\phi) \rightarrow V(v+h)$

$$\begin{split} V &= V_0 + \lambda v^2 h^2 + \lambda v h^3 + \frac{1}{4} \lambda h^4 + \dots \\ &= V_0 + \left[\frac{1}{2} m_h^2 h^2 \right] + \left[\frac{m_h^2}{2 v^2} v h^3 \right] + \left[\frac{1}{4} \frac{m_h^2}{2 v^2} h^4 \right] + \dots \\ &\text{mass term} \quad hh\text{-production} \quad hhh\text{-production} \end{split}$$

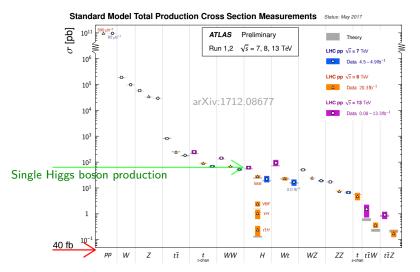

Standard Model (SM):

$$v = \frac{\mu}{\sqrt{\lambda}} = 246 \,\mathrm{GeV}$$

$$\lambda = \frac{m_h^2}{2v^2} \approx 0.13$$


SM Higgs boson pair production at the LHC

 $\,\circ\,$ SM Higgs boson pair production (gluon-gluon fusion - ggF):

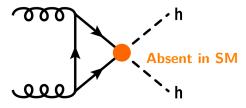


SM Higgs boson pair production at the LHC

 $\,\circ\,$ SM Higgs boson pair production (gluon-gluon fusion - ggF):

SM Higgs boson pair production at the LHC

 $\,\circ\,$ SM $hh\mbox{-}{\rm production}\,\sim 1000\times$ smaller compared to $h\mbox{-}{\rm production}$

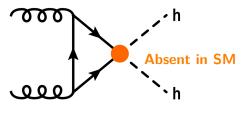

o Current LHC dataset won't be large enough to reach the sensitivity

BSM Higgs boson pair production

Sensitivities to BSM *hh*-production interesting already at LHC.

Non-resonant enhancements:

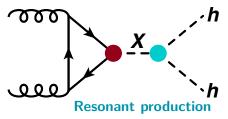
- o Modified Yukawa/self-coupling
- New couplings



BSM Higgs boson pair production

Sensitivities to BSM hh-production interesting already at LHC.

Non-resonant enhancements:


- o Modified Yukawa/self-coupling
- New couplings

Resonant Higgs boson pair production

Benchmark BSM hypotheses:

- Randall-Sundrum graviton $G \rightarrow hh$ (spin=2)
- Heavy Higgs $H \rightarrow hh$ (spin=0)

Di-Higgs decay modes and relative branching fractions:

	bb	ww	ττ	ZZ	γγ
bb	34%	10.2	23731/C`	YRM-201	7-002
WW	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.070%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.00052%

The most sensitive channels to the SM hh:

 $hh \rightarrow b \bar{b} b \bar{b}$: the highest branching fraction, large multijet background

 $hh o b ar{b} au^+ au^-$: relatively large branching fraction, cleaner final state

 $hh \rightarrow b\bar{b}\gamma\gamma$: small branching fraction, clean signal extraction due to the narrow $h \rightarrow \gamma\gamma$ mass peak

Di-Higgs decay modes and relative branching fractions:

	bb	ww	ττ	ZZ	γγ
bb	34%	10.2	23731/C`	YRM-201	7-002
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.070%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.00052%

other channels being considered: bbWW, 4W and $WW\gamma\gamma$

Di-Higgs decay modes and relative branching fractions:

	bb	ww	ττ	ZZ	γγ
bb	34%	10.2	23731/C`	YRM-201	7-002
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.070%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.00052%

feasibility studies: $bbZZ,\,WW\tau\tau$ and 4τ

Di-Higgs decay modes and relative branching fractions:

	bb	ww	ττ	ZZ	γγ
bb	34%	10.2	23731/C`	YRM-201	7-002
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.070%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.00052%

other channels being considered: bbWW, 4W and $WW\gamma\gamma$ feasibility studies: bbZZ, $WW\tau\tau$ and 4τ

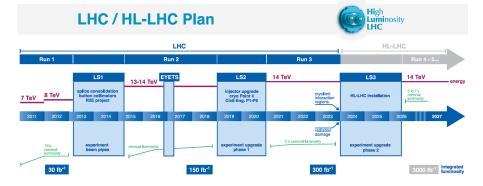
dedicated boosted analyses, $\mathsf{VBF}\text{-}hh$ investigated

The most sensitive channels to the SM hh:

 $hh \rightarrow b \bar{b} b \bar{b}$: the highest branching fraction, large multijet background

 $hh o b ar{b} au^+ au^-$: relatively large branching fraction, cleaner final state

 $hh \rightarrow b\bar{b}\gamma\gamma$: small branching fraction, clean signal extraction due to the narrow $h \rightarrow \gamma\gamma$ mass peak

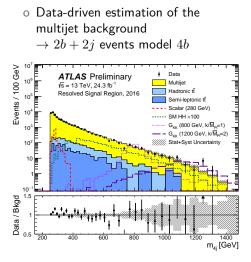

SM Higgs pair production, Run-2 Results

o Observed (expected) 95% C.L. limit on $\sigma/\sigma_{\rm SM}$ (Run-2 published results):

channel	bbbb	bbWW	bb au au	${ m bb}\gamma\gamma$	$WW\gamma\gamma$
ATLAS	13 (21)	-	-	117 (161)	747 (386)
CMS	342 (308)	79 (89)	28 (25)	19 (17)	-
	2.3-3.2 fb ⁻	¹ 13.3	fb^{-1}	27.5-35.9 fb-	1

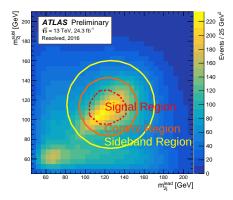
- ATLAS publications using the 2015 + 2016 dataset expected.
- $\circ\,$ In the context of the HL-LHC prospects studies this is important for those analyses which perform an extrapolation of the Run-2 result.
- o Possible statistical combination.

ATLAS $b\bar{b}b\bar{b}$: Preliminary ATLAS $b\bar{b}\gamma\gamma$: ATLAS-CONF-2016-004 ATLAS $WW\gamma\gamma$: ATLAS-CONF-2016-071 CMS $b\bar{b}b\bar{b}$: PAS HIG-16-002 CMS $b\bar{b}WW$: PAS-HIG-17-006 CMS $b\bar{b}\tau\tau$: Phys. Lett. B 778 (2018) 101 CMS $b\bar{b}\gamma\gamma$: PAS-HIG-17-008

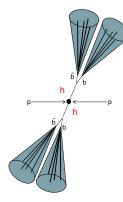

SM hh HL-LHC prospects

Two alternative approaches:

(1) extrapolation of the Run-2 results $\rightarrow \sqrt{s} = 14 \text{ TeV}, \int Ldt = 3000 \text{ fb}^{-1}$


(2) 14 TeV samples with the upgraded detector geometry, upgrade performance functions

Run-2 resolved $hh \rightarrow bbbb$

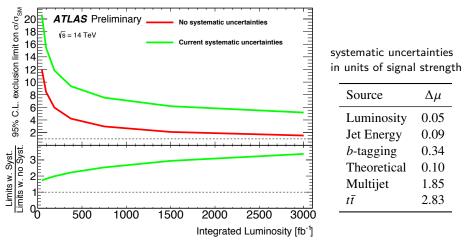


 $\sim 90\%$ multijet and $\sim 10\% t\bar{t}$

Background:

- The reweighting is performed using one-dimensional distributions iteratively
- o $t\bar{t}$ normalization from data

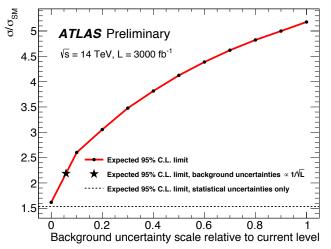
$SM hh \rightarrow b\bar{b}b\bar{b}$ HL-LHC prospects


ATL-PHYS-PUB-2016-024

extrapolation of the previous Run-2 result: $\int Ldt = 10.1 \rightarrow \int Ldt = 3000 \text{ fb}^{-1}$

Signal and background distributions scaled by $f = \int L dt |_{target} / \int L dt |_{current}$ All distributions are scaled by 1.18 to account for an increase in cross-section. Normalizations fixed to the best Run-2 fit values.

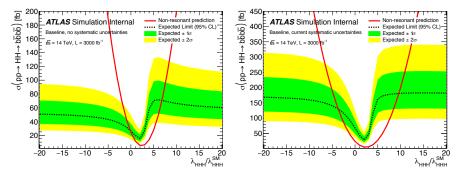
Extrapolated sensitivity


ATL-PHYS-PUB-2016-024

• Extrapolation of the 95% C.L. exclusion limit: without systematics: $\sigma/\sigma_{SM} = 1.5$ with current level of systematics: $\sigma/\sigma_{SM} = 5.2$

Background uncertainty reduction

ATL-PHYS-PUB-2016-024

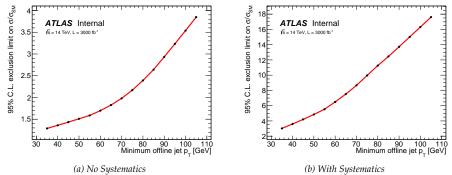


 Significant improvements in (data-driven) background modeling possible with larger dataset

Limits on Higgs self-coupling (Pixel TDR)

Updated in respect to ATL-PHYS-PUB-2016-024

- $\,\circ\,$ extrapolated using a full 2015+2016 dataset and
- \circ includes improved ITk b-tagging expected efficiency



• Extrapolation of the 95% C.L. exclusion limit: without systematics: $0.2 < \lambda_{hhh} / \lambda_{hhh}^{SM} < 7.0$ with systematics: $-3.5 < \lambda_{hhh} / \lambda_{hhh}^{SM} < 11.0$

Minimum jet p_{T} thresholds (TDAQ TDR)

Updated in respect to ATL-PHYS-PUB-2016-024

- $\,\circ\,$ extrapolated using a full 2015+2016 dataset and
- o includes improved ITk b-tagging expected efficiency

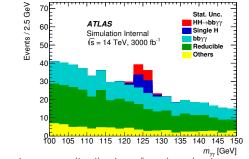
- $\circ~{\rm Non-resonant}~hh\to 4b~\sigma/\sigma_{\rm SM}~95\%$ exclusion limit as a function of the minimum offline jet p_T
- o $2j35_b60_2j35$ trigger most important for Run-2 SM hh (efficient for 85% of signal)

SM $hh \rightarrow b\bar{b}\gamma\gamma$ HL-LHC prospects

ATL-PHYS-PUB-2017-001, Pixel TDR

The study is based on $\sqrt{s} = 14$ TeV Monte Carlo (MC) simulations.

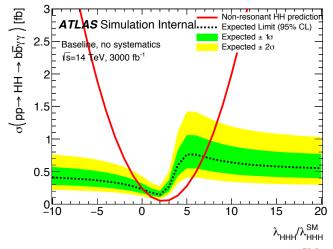
The final state particles at truth level are smeared according to the expected detector resolutions assuming a pile-up scenario with 200 overlapping events ($< \mu >= 200$).


The expected efficiencies and fake rates for identifying b-jets and photons are used.

Background composition

• Main backgrounds arise from processes with multiple jets and photons:

- Processes with a single Higgs boson
- Continuum background $(b\bar{b}\gamma\gamma, c\bar{c}\gamma\gamma, jj\gamma\gamma, b\bar{b}j\gamma, c\bar{c}j\gamma, b\bar{b}jj)$


• Other backgrounds include $Z(b\bar{b})\gamma\gamma$, $t\bar{t}$ and $t\bar{t}\gamma$ processes.

Di-photon invariant mass distribution after the selection except for m_{bb} cut

- o Significance (Pixel TDR): 1.5σ (based on improved b-tagging performance and photon energy resolution)
- ο ATL-PHYS-PUB-2017-001: 1.05σ

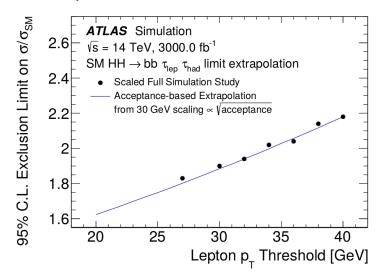
Limits on Higgs self-coupling

• Result without systematics (Pixel TDR): $0.2 < \lambda_{hhh} / \lambda_{hhh}^{SM} < 6.9$ (based on improved *b*-tagging performance and photon energy resolution)

o ATL-PHYS-PUB-2017-001: $-0.8 < \lambda_{hhh} / \lambda_{hhh}^{SM} < 7.7$

SM $hh \rightarrow b\bar{b}\tau^+\tau^-$ **HL-LHC prospects** ATL-PHYS-PUB-2015-046 The study is based on $\sqrt{s} = 14$ TeV Monte Carlo (MC) simulations.

The final state particles at truth level are smeared according to the expected detector resolutions assuming a pile-up scenario with 140 overlapping events ($< \mu >=$ 140).


The expected efficiencies and fake rates for identifying b-jets and τ s are used.

All di- τ final states considered.

Results with systematics: 0.6σ $-4.0 < \lambda_{hhh} / \lambda_{hhh}^{SM} < 12$

Single lepton trigger (TDAQ TDR)

 $\circ~{\rm SM}~hh \to b\bar{b}\tau^+_{\rm hep}\tau^-_{\rm had}$ Run-2 result extrapolation based study (w/o syst)

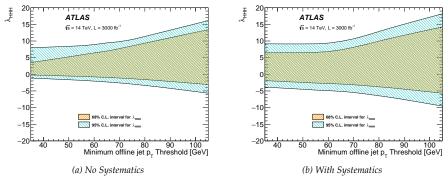
Summary table

channel	$\lambda_{hhh}/\lambda_{hhh}^{ m SM}$ allowed interval $@~95\%$ C.L.	significance
$hh ightarrow bar{b}bar{b}$ current syst $hh ightarrow bar{b}\gamma\gamma$ w/o syst $hh ightarrow bar{b}\tau^+\tau^-$ syst	[-3.5,11.0] [0.2,6.9] [-4.0,12.0]	1.5σ 0.6 σ

• Very conservative estimations!

Conclusion and Outlook

- Other ggF channels and the VBF category for the most sensitive channels could contribute to overall sensitivity
- o Statistical uncertainty dominant for all Run-2 analyses
- $\circ\,$ Main systematic uncertainties: $b\text{-tagging},\,\tau\text{-identification},\,\ldots\,$
- Background modeling uncertainties can be reduced with an increased amount of data.
- $\,\circ\,$ Triggering stays the limiting factor (topological triggers could be helpful). Inner detector upgrades important for hh
- Hoping for updated results soon. This will provide more realistic estimations and better understanding of the needed detector performance.


Thank you for your attention!

backup slides

Minimum jet p_{T} thresholds (TDAQ TDR)

Updated in respect to ATL-PHYS-PUB-2016-024

- $\,\circ\,$ extrapolated using a full 2015+2016 dataset and
- o includes improved ITk b-tagging expected efficiency

- $\circ\,$ Allowed intervals for the λ_{hhh} parameter assuming the SM as function of the minimum offline jet $p_T.$
- $\circ~2j35_b60_2j35$ trigger most important for Run-2 SM hh (efficient for 85% of signal)