

Higgs couplings at high energies

HL/HE LHC Meeting

Fermilab - 04.05.2018

Many exciting opportunities ahead!!!

Direct Higgs-top CP-measurement

Exciting opportunities ahead!

Mixture possible in some models, e.g., 2HDM

Not excluded from Higgs measurements

Exciting opportunities ahead!

Fermilab - 04.05.2018

Directly Measuring ttH Spin correlations of top and anti-top affected by nature of interaction $\Delta \phi_{tt}$ distribution directly reflects on $\Delta \phi_{ll}$: Parke, Mahlon (2010) $\mathcal{L} \supseteq -rac{m_t}{v} K \bar{t} \left(\cos lpha + i \gamma_5 \sin lpha ight) t H$ 0.55□ $\sigma_{H \underline{\overline{t}_i t_j}}$ 40 $0^{+} \ \overline{t}t_{LL+RR}$ $\frac{1}{\sigma} \frac{d\sigma}{d\Delta\phi_{u}}$ 0⁺ īt tt_{II+BB} $\frac{d\sigma}{d\Delta \phi_{...}}$ [fb] 0.5 $0^+ \bar{t}t_{I_{LR+RL}}$ $-0^{\overline{}}$ tt ŧt^{LR+RL} 35 0⁻ tt_{LL+RR} 0^{-} tt_{LL+RR} 0.8 0.45 - 0⁻ ītt_{LR+RL} 0⁻ Ītt_{LR+RL} 30 0.4 Lab-frame 0.6 25 0.35 0.3 20 0.4 0.25 15 0.2 Lab-frame p_{TH} >10 GeV 10 0.2 1.5 $\sigma_{0^{-}tt}/\sigma_{0^{+}tt}$ р_{тн}>200 GeV 0.5^t 100 200 300 400 2 3 2 p_{T.H} [GeV] $\Delta \phi_{...}$ $\Delta \phi_{**}$ Top mass effects in presence of a further massive H boson pushes chiral limit to higher scales $\mathcal{M}_{0^- t \bar{t}_{LR+RL}} \propto \cos\left(\frac{\Delta \phi_{tt}}{2}\right)$ $\mathcal{M}_{0^+ t \bar{t}_{LR+RL}} \propto \sin\left(\frac{\Delta \phi_{tt}}{2}\right)$ Buckley, DG (PRL-2015)

Dorival Gonçalves

Spin correlations of top and anti-top affected by nature of interaction $\Delta \phi_{tt}$ distribution directly reflects on $\Delta \phi_{ll}$:

Parke, Mahlon (2010)

Boosted Higgs (PTH>200GeV) nicely match with H>bb BDRS algorithm

No previous study with dileptonic ttH(bb) via BDRS in the literature Buckley, DG (PRL-2015)

Plehn, Salam, Spannowsky (2009)

Dorival Gonçalves

Higgs candidate is genuinely <u>part of a multi-jet system</u>:

Proper modelling of the QCD emissions indispensable requirement for robust analysis

Signal & backgrounds are @NLO (MC@NLO), accounting for spin correlation on top decays

Dorival Gonçalves

Higgs candidate is genuinely <u>part of a multi-jet system</u>:

Proper modelling of the QCD emissions indispensable requirement for robust analysis

Signal & backgrounds are @NLO (MC@NLO), accounting for spin correlation on top decays

Off-Shell Higgs Production

Just recently, we start to recognize the importance of the Off-Shell Higgs since $\Gamma_H/m_H \sim 3 \times 10^{-5}$ one naively expects very small off-shell rates

However, at least 15% of the $H \rightarrow 4l$ cross-section comes from $m_{4l} > 300$ GeV

Spectacular fail of Narrow Width Approximation

Interference with background: $gg \rightarrow h^* \rightarrow ZZ$ with $gg \rightarrow ZZ$;

ZZ Threshold;

and top mass effects change our naive expectation

Theoretical ingredients

Carries information on the Higgs couplings at different energy scales

Off-shell probe to Higgs Portal

$$\mathcal{L} \supset \partial_\mu S \partial^\mu S^* - \mu^2 |S|^2 - \lambda_S |S|^2 |H|^2$$
 with \mathcal{Z}_2 symmetry

Separably renormalizable, UV finite, gauge-invariant subset

Corrections are also at $\delta\sigma^{NLO}_{gg
ightarrow 4l}\propto\lambda^2_S\,$ order

DG, Han, Mukhopadhyay (PRL-2017)

Dorival Gonçalves

Off-shell probe to Higgs Portal

$$\mathcal{L} \supset \partial_{\mu}S\partial^{\mu}S^* - \mu^2|S|^2 - \lambda_S|S|^2|H|^2$$
 with \mathcal{Z}_2 symmetry

Separably renormalizable, UV finite, gauge-invariant subset

Corrections are also at $\delta\sigma^{NLO}_{gg
ightarrow 4l} \propto \lambda_S^2~$ order

DG, Han, Mukhopadhyay (PRL-2017)

Dorival Gonçalves

Off-shell probe to Higgs Portal

$$\mathcal{L} \supset \partial_\mu S \partial^\mu S^* - \mu^2 |S|^2 - \lambda_S |S|^2 |H|^2$$
 with \mathcal{Z}_2 symmetry

New states could have a direct connection to Naturalness:

$$\begin{split} \delta M_h^2 &= \frac{1}{16\pi^2} (\lambda_S - 2N_c y_t^2) \Lambda^2 + \frac{6N_c y_t^2}{16\pi^2} m_t^2 \log \frac{\Lambda^2}{m_t^2} \\ &- \frac{1}{16\pi^2} \left(\lambda_S m_S^2 + \lambda_S^2 v^2 \right) \log \frac{\Lambda^2}{m_S^2}, \end{split}$$

Works for the maximally hidden scenario!

If we add extra charges, e.g., stop case the off-shell effects tend to be larger

e⁺e⁻ >ZH study: Craig, McCullough, Englert (2015) DG, Han, Mukhopadhyay (PRL-2017)

Dorival Gonçalves

HL/HE-LHC give very energetic Higgses with significant statistics, opening several Pheno possibilities

- Direct Higgs-top CP-measurement:
 - We can go beyond the *direct* Higgs-top strength analysis, probing also *directly* its CP-structure via spin correlation from the top decays
 - Boosted Higgs analysis nicely match with CP-structure measurement

Off-shell Higgs:

- Relevant probe to new physics that goes beyond the usual H-width measurement or bump hunt
- We illustrate this via a maximally hidden scenario that can display connections to the hierarchy problem

Many exciting opportunities ahead!!!

... and learning many more in the other talks!!!

Thank you for your attention!

- Higgs candidate is genuinely <u>part of a multi-jet system</u>:
 - Proper modelling of the QCD emissions indispensable requirement for robust analysis
- Signal & backgrounds are @NLO (MC@NLO), accounting for spin correlation on top decays

- Higgs candidate is genuinely <u>part of a multi-jet system</u>:
 - Proper modelling of the QCD emissions indispensable requirement for robust analysis
- Signal & backgrounds are @NLO (MC@NLO), accounting for spin correlation on top decays
- Seeking for light pseudoscalars: ttA(bb) can <u>direct</u> access the Yukawa and explore low m_A Tailoring the BDRS analysis for different m_A ranges: R~2m_A/p_{TA}

Lopez-val, **DG** (2016)

Kozaczuk, Martin (2015); Casolino, Spannowsky (2015)

Dorival Gonçalves

- Higgs candidate is genuinely <u>part of a multi-jet system</u>:
 - Proper modelling of the QCD emissions indispensable requirement for robust analysis
- Signal & backgrounds are @NLO (MC@NLO), accounting for spin correlation on top decays
 - Seeking for light pseudoscalars: ttA(bb) can <u>direct</u> access the Yukawa and explore low m_A Tailoring the BDRS analysis for different m_A ranges: R~2m_A/p_{TA}

Lopez-val, DG (2016)

Carries information on the Higgs couplings at different energy scales

$$\mathcal{M}_{t}^{++00} \approx + \frac{m_{t}^{2}}{2m_{Z}^{2}} \log^{2} \frac{m_{4\ell}^{2}}{m_{t}^{2}}$$
$$\mathcal{M}_{c}^{++00} \approx - \frac{m_{t}^{2}}{2m_{Z}^{2}} \log^{2} \frac{m_{4\ell}^{2}}{m_{t}^{2}}$$

with $m_{4\ell} \gg m_t \gtrsim m_H, m_Z$

with $m_{4\ell} \gg m_t \gtrsim m_Z$.

Destructive interference

The Higgs does what he is expected to do! (Quigg, Lee, Thacker 1977)

a|² - Background component: generated already at tree level (large) known at NNLO (Cascioli et. al. 2014)

- |b+c|² (loop induced) known at NLO (w/o mt effects). Internal masses make it a non-trivial multi-scale problem; Very important calculation for Run II Caola, Melnikov, Röntsch, Tancredi (2015)
 - |b|² continuum background
- ↓ |c|² Higgs signal

→ Re{b*c} - Signal/background interference large and destructive at large invariant mass $|c|^2$ and b*c present similar perturbative QCD enhancement: $K_{b*c}^{NLO} \sim K_{|c|^2}^{NLO}$

Bonvini, Caola, Forte, Melnikov, Ridolfi (2013)

Dorival Gonçalves

Fermilab - 04.05.2018

Technology is there: gg>hh