Future of charm, strangeness, au^{\pm} at LHCb

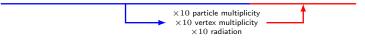
Miguel Ramos Pernas on behalf of the LHCb collaboration

Universidade de Santiago de Compostela

miguel.ramos.pernas@cern.ch

HL/HE LHC meeting

Fermilab, April 5, 2018



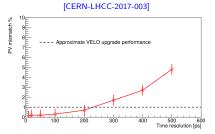
European Research Council

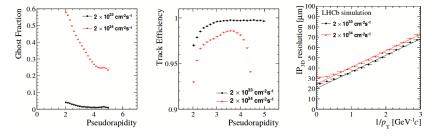
Established by the European Commission

General aspects for a HL/HE LHCb

2019	2020	2021	2022	2023	2024	2025	202	26 2	2027	2028	2029	2030	2031	2032	203+
		Run III						Run IV					Run V		
LS2						LS3						LS4			
LHCb 40 MHz UPGRADE Phase I		$L = 2 x 10^{33}$		LHCb Consolidation				$L = 2 x 10^{33} 50 fb^{-1}$		LHCb Ph II UPGRADE *		$L = 2 x 10^{34} 300 fb^{-1}$			
ATLAS Phase I Upgr		$L = 2 \times 10^{34}$		ATLAS Phase II UPGRADE			E	$HL-LHC$ $L = 5 \times 10^{34}$		ATLAS	5	$\frac{HL-L}{L} = 5$			
CMS Phase I Upgr		300 fb ⁻¹		CMS Phase II UPGRADE			E			смѕ		3000 fb-1			
Belle I	I	5 ab ⁻¹	L = 8 x	1035	50 0	ab ⁻¹									

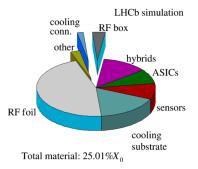
Many challenges ahead


- Improve tracking system/trigger to fit in timing constraints
- Maintain or improve the current resolutions (mass, impact parameter, p_T, ...)
- Development of faster simulation methods

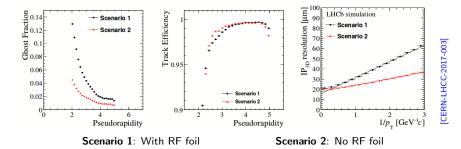

Miguel Ramos Pernas

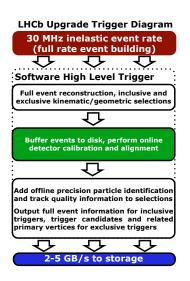
Tracking performance

 $\mathcal{L} \times 10$ is challenging for tracking:


- Expected pile-up ~ 50
- Selection of b and c hadrons is based on the flight distance
- Requires correct association of production vertex and decay vertices
- 13% mismatching for *b*-hadron decays if we keep the Phase-I Upgrade configuration
- With a track hit time resolution of $\sim 200~{\rm ps},$ we recover the current levels

The VELO RF foil



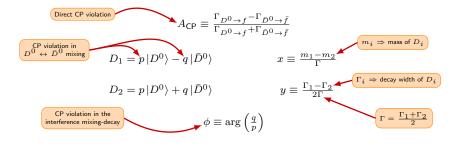

- The RF foil separates VELO vacuum from primary LHC vacuum
- Isolates sensors from radio-frequency pickup
- Introduces a lot of material right in front of the interaction point
- Increases the resolution on the impact parameter due to multiple scattering

Miguel Ramos Pernas

Removal of the VELO RF foil

- A lot of effort has been put on reducing the amount of material
- For charm and τ decays (and partially reconstructed B decays), the impact parameter resolution is crucial
- RF foil removal is risky, but the improvement is very big!

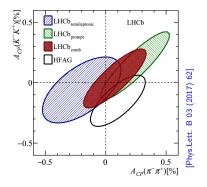
For the Phase-I Upgrade:


- Loose E_T and p_T cuts, increase the efficiencies to study soft processes (charm, strange and τ decays)
- Dynamic mix of inclusive and exclusive lines
- Only the requested information from the event is saved [arXiv:1604.05596]
- More efficient particle identification and reconstruction algorithms
- Efficiencies up to $\sim 90\%$ are possible

For Phase-II...

- Tighter throughput constraint
- Maybe need to restructure the trigger
- Usage of GPUs, FPGAs, etc... for simple processes

Interest on charm decays

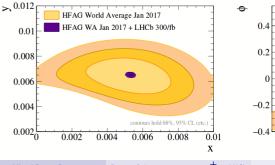

- Charmed hadrons provide the only way to study CP violation (CPV) with up-type quarks
- After the Phase-II Upgrade, LHCb will have recorded the largest sample of charm hadrons ever
- This would constitute over 2 orders of magnitude of what is expected for Belle II in $D^0 \rightarrow h^+h^-$, $D^0 \rightarrow K^0_S h^+h^-$ ($h = \pi$, K)
- · To study CPV, huge statistics needed for both real data and simulated samples

- Direct CPV is not so cleanly predicted, smaller than $\sim 10^{-3}$ [arXiv:1608.06528], close to the current sensitivity.
- LHCb has the best measurements of $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ asymmetries:

$$\begin{split} A_{\rm CP}(D^0 \to K^+K^-) &= (0.04 \pm 0.12 \pm 0.10)\% \\ A_{\rm CP}(D^0 \to \pi^+\pi^-) &= (0.07 \pm 0.14 \pm 0.11)\% \end{split}$$

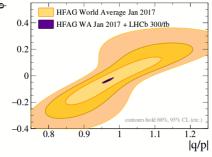
• The main systematic comes from the statistics of the control samples, like $D^+ \to K^0_S \pi^+$

For Phase-II Upgrade


$$\sigma (A_{\rm CP}^{\pi\pi} - A_{\rm CP}^{KK}) \sim 10^{-5}$$

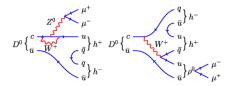
Opportunity to measure CP asymmetries with charmed baryons:

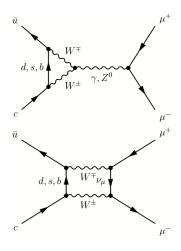
- Λ_c^+ sensitivity $\sigma(A_{\rm CP})\sim 10^{-4}$
- Ξ_{cc}^{++} sensitivity $\sigma(A_{\rm CP}) \sim 10^{-3}$


Indirect CPV

- CPV in mixing-related phenomena are predicted to be $\sim 10^{-4}$ or less [arXiv:1510.05797]
- Direct access to CPV observables like $x,\ y,\ |q/p|$ and ϕ
- Current results are limited by statistics
- Improving the K^0_S reconstruction would help to study $D^0 \to K^0_S h^+ h^-$

For Phase-II, the expectation is to bring these parameters down to: $\sigma(x) \sim 10^{-5} \qquad \sigma(y) \sim 10^{-5}$ $\sigma(|q/p|) \sim 10^{-3} \qquad \sigma(\phi) \sim 10^{-3} (^{\circ})$ $\text{No-mixing} \Rightarrow x = y = 0$ $\text{No CP violation} \Rightarrow \phi = 0^{\circ} \text{ and } |q/p| = 1$


Miguel Ramos Pernas


Future of charm, strangeness, au^{\pm} at LHCb

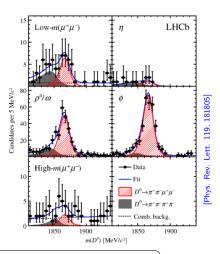
(HL/HE LHC meeting, Fermilab, April 5, 2018) 8

Rare decays

- Rare charm decays constitute a unique probe for New Physics in the up-quark sector
- Relatively unexplored
- Higher-order diagrams are very suppressed
- *b*-anomalies make progress on studying $c \rightarrow u$ more pressing

Rare decays

 $D^0
ightarrow h^+ h^- \mu^+ \mu^-$

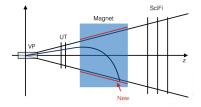

- Observed the first signal of leptonic decays of *c* mesons [Phys. Rev. Lett. 119, 181805]
- In Phase-II, high-statistics amplitude and angular analysis (disentangle between SD, LD)

$D^0 ightarrow \mu^+ \mu^-$

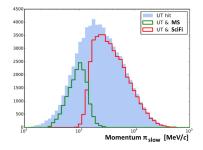
• Expectation for Phase-II:

 $\mathcal{B}\left(D^0 \to \mu^+ \mu^-\right) \sim 10^{-10}$

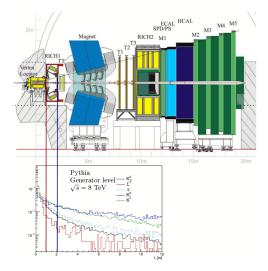
• Particle identification is crucial to reduce the background from $D^0 \to h^+ h^-$


Searches also for D
ightarrow hll, $\Lambda_c^+
ightarrow p \mu^+ \mu^-$, ...

Possibility to explore the electron modes starting in Run-II


With an improved ECAL, search for radiative charm decays?

The magnet stations



- D^0 mesons are usually tagged using $D^{*+} \rightarrow D^0 \pi^+_{\rm soft}$
- The track of the $\pi^+_{\rm soft}$ has a high chance of running outside the detector
- Aim to place tracking stations in the magnet region
- Gain of 21% for $D^{*+} \rightarrow D^0(K\pi)\pi^+_{\text{soft}}$
- Improvements also for $R(D^*)$, Heavy Ion, ...

Strange decays at LHCb

- Huge production of strange hadrons at LHCb
- Larger lifetimes
- $\mathcal{O}(10^{13})/{\rm fb}^{-1}~K^0_S$ decay inside the VELO
- Efficiencies have been proved to be high enough already in 2011, using the $K^0_S \to \mu^+\mu^-$ analysis as a benchmark
- Many possibilities to study: K_S^0 , Λ^0 , Σ^+ , Ξ^- , ...
- Currently developing tracking, particle identification and tagging algorithms

$K^0_S ightarrow \mu^+ \mu^-$

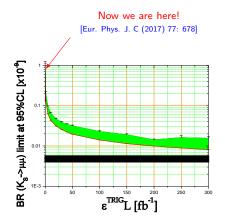
- Flavour-changing neutral current (FCNC) transition
- Dominated by long distance contributions through $K^0 \to \gamma \gamma$
- $\mathcal{B}(K_S^0 \rightarrow \mu^+\mu^-)$ helps to kill models with leptoquarks [arXiv:1712.01295], or supersymmetric contributions [arXiv:1711.11030], [arXiv:1712.04959]
- Study of the interference between $K^0_L\to\mu^+\mu^-$ and $K^0_S\to\mu^+\mu^-$ allows to determine ${\rm sign}(A^\mu_{L\gamma\gamma})$

$$\mathcal{B}(K_S^0 \to \mu^+ \mu^-) = (5.18 \pm 1.50 \pm 0.02) \times 10^{-12}$$

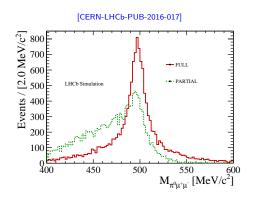
 $\mathcal{B}\left(K_L^0 \to \mu^+ \mu^-\right) = \begin{cases} (6.85 \pm 0.80 \pm 0.06) \times 10^{-9} & \text{if } A_{L\gamma\gamma}^\mu > 0 \\ (8.11 \pm 1.49 \pm 0.13) \times 10^{-9} & \text{if } A_{L\gamma\gamma}^\mu < 0 \end{cases} \xrightarrow{A_L^\mu \gamma \gamma = \text{sign}\left(\frac{\mathcal{A}(K_L^0 \to \gamma\gamma)}{\mathcal{A}(K_L^0 \to (\pi^0)^* \to \gamma\gamma)}\right) \end{cases}$

[Nucl. Phys. B366 (1991) 189] [JHEP 01 (2004) 009] [Phys. Rev. Lett. 119, 201802 (2017)]

$K^0_S ightarrow \mu^+ \mu^-$ invariant mass

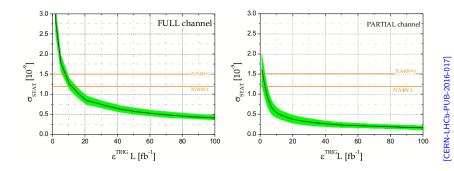

- Backgrounds are currently under control
- $K^0_S \to \pi^+\pi^-$ with the two pions misidentified as muons dominates the spectrum
- Benefit from improvements on muon identification at low- p_T
- Currently we have a very good resolution around the K⁰_S mass (~ 4MeV/c²). Mantaining it is completely necessary.

$K^0_S ightarrow \mu^+ \mu^-$ prospects


At high luminosity, another enemy appears...

- $K_L^0 \rightarrow \mu^+ \mu^-$ is an irreducible background ($\mathcal{B} = (5.8 \pm 0.6 \pm 0.4) \times 10^{-9}$ [Phys. Rev. Lett. 63, 2185])
- For Run-I, $\mathcal{B}_{\rm eff}\left(K^0_L\to\mu^+\mu^-\right)$ was out of the sensitivity $\sim 10^{-11}$
- With 300 fb⁻¹, both branching fractions will be of the same order of magnitude
- Need to define a strategy to differenciate $K^0_S \leftrightarrow K^0_L$
- Having a good proper time resolution is crucial!

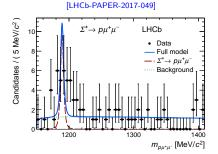
$K^0_S o \pi^0 \mu^+ \mu^-$


- SM prediction of $K_L^0 \to \pi^0 \mu^+ \mu^$ depends on the measurement of $\mathcal{B}(K_S^0 \to \pi^0 \mu^+ \mu^-) = 2.9^{+1.5}_{-1.2} \times 10^{-9}$ [Phys. Lett. B599 (2004) 197]
- Current kaon experiments do not expect to improve such measurement
- A sensitivity study was performed at LHCb
- Low π^0 reconstruction efficiency at LHCb
- The K^0_S mass does not depend too much on the information from the π^0

Two possible strategies FULL: fully reconstruct the candidate PARTIAL: omit the π^0 reconstruction

Miguel Ramos Pernas

$K^0_S o \pi^0 \mu^+ \mu^-$ prospects

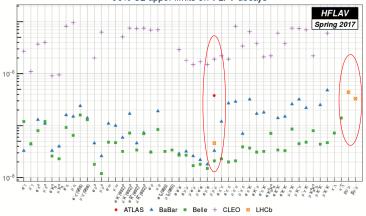

- Beating the NA48 measurement [Phys. Lett. B599 (2004) 197] is possible in the upgrade ${\cal L}_{eff} > 5~fb^{-1}$
- Best strategy omitting the π^0 reconstruction
- Maybe benefit from an upgraded ECAL

Miguel Ramos Pernas

Other strange friends

There are many other interesting studies that can be done at LHCb:

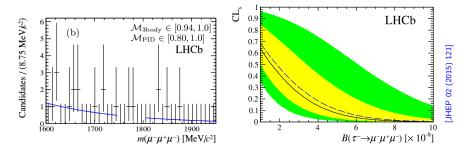
- $K_S^0 \rightarrow x^+ x^- l^+ l^-$: highly suppressed in the SM ($\sim 10^{-14}$ for muons)
- $K^+ \rightarrow \pi^+ \mu^+ \mu^-$: maybe competitive with NA62 (LFU)
- Semileptonic/rare Hyperon Decays $(\Lambda^0 \to p\mu^- \bar{\nu}, \Sigma^+ \to p\mu^+ \mu^-, ...)$
- $K_S^0 \rightarrow \pi^+ \mu^- \bar{\nu}$: no measurement at present (V_{us} , CPT, LFU)



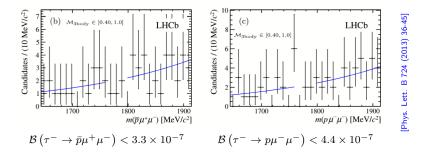
For the moment, everything very preliminar in most cases:

- No dedicated trigger lines for SHD or $K_S^0 \to \pi^+ \mu^- \bar{\nu} \ (\mathcal{B} \sim 10^{-4})$
- Apart from $\Sigma^+ \rightarrow p \mu^+ \mu^-$, nothing published so far, set benchmarks for Run-II
- Tracking is challenging for K⁺ studies (flight distance ~ m)

au decays


- LHCb was the first experiment to search for LFV τ decays on a hadron collider
- Inclusive production of τ leptons, mainly from b and c hadron decays
- Calibration and normalization channel $D^-_s \to \phi(\mu^+\mu^-)\pi^-$

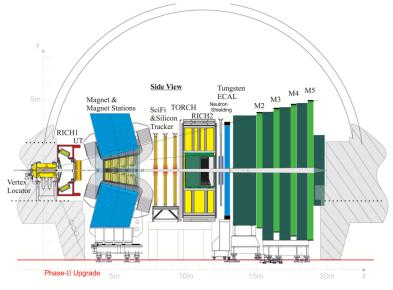
90% CL upper limits on τ LFV decays


$au^- o \mu^+ \mu^- \mu^-$

- Getting close to B-factories (ongoing studies with Run-II data samples)
- With ~ 300 fb⁻¹, we expect B (τ[−] → μ⁺μ[−]μ[−]) < 3 × 10^{−9}, similar to what is expected for Belle 2 with 50 ab^{−1}
- Irreducible background of $D_s^- \to \eta(\mu^+\mu^-\gamma)\mu^-\bar{\nu}_\mu$, reduced with cuts in $m_{\mu^+\mu^-}$
- Benefit from any improvement on the ECAL

$au^- o ar{p} \mu^+ \mu^-$ and $au^- o p \mu^- \mu^-$

- Test for models where $|\Delta(B-L)| = 0, 2$
- Analysis done using the data sample from 2011 (no update since then)
- · Clean signature, no expected peaking backgrounds
- We might expect a factor of 20 of improvement using the full Run-(I V) samples



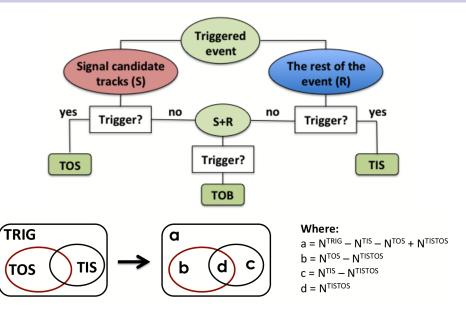
Conclusions

- LHCb has a big power of adaptation to new fields
- Tracking and trigger improvements are crucial:
 - Tracking efficiency
 - Ghost removal
 - Low- p_T reconstruction
 - Full software trigger
- An upgraded ECAL allows to better control backgrounds and use other normalization channels
- Larger samples of both real and simulated data allows approaching SM predictions for CPV in charm decays
- New possibilities to study strange decays at LHCb, reach SM prediction for $K^0_S
 ightarrow \mu^+ \mu^-$
- Expected a very big improvement on au decays, competitive with B-factories

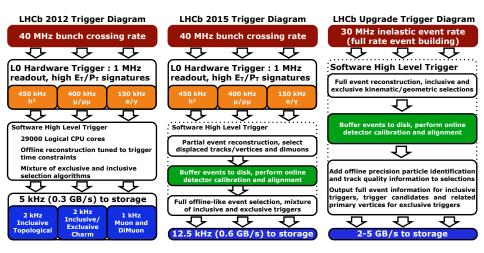
BACKUP

The LHCb detector in Phase-II Upgrade

[CERN-LHCC-2017-003]

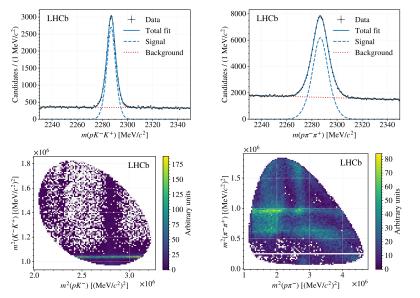

Future of charm, strangeness, au^\pm at LHCb

2019	2020	2021	2022	2023	2024	2025	202	6	2027	2028	2029	2030	2031	2032	203+
		Run III						Run IV				Run V			
LS2						LS3						LS4			
UP	40 MHz GRADE Phase I	L	$= 2 \times 1$) ^{3 3}	LHCb	Consolid	ation			= 2 x 10 50 fb ⁻¹	933 9	LHCb UPGR		L = 2 300	
ATLAS Phase I Upgr		$L = 2 x 10^{34}$		ATLAS Phase II UPGRADE			E	$HL-LHC$ $L = 5 \times 10^{34}$		ATLAS	5	HL-L L = 5			
CMS Phase 1	(Upgr		300 fb-	1	CMS Phase II UPGRADE		E			CMS		3000 fb ⁻¹			
Belle I	I	5 ab ⁻¹	L = 8 x	10 ³⁵	50 0	ab ⁻¹									


Track types at LHCb

Trigger definitions

LHCb trigger diagrams



$D^0 ightarrow \mu^+ \mu^-$ mass distributions

Candidates / (0.5 MeV/ c^2) LHCb (a) $\Delta m_{\mu^+\mu^-}$ [MeV/c²] Candidates / (10 MeV/c²) (b) LHCb $\frac{1950 \quad 2000}{m_{\mu^+\mu^-} \,[\text{MeV}/c^2]}$

[Phys. Lett. B 725 (2013) 15-24]

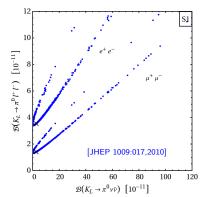
$\Lambda_c^+ ightarrow p K^+ K^-$ and $\Lambda_c^+ ightarrow p \pi^+ \pi^-$

Efficiency	$K_S^0 \rightarrow \mu^+ \mu^-$	$K_S^0 \rightarrow \pi^0 \mu^+ \mu^-$				
LO	0.361 ± 0.004	0.344 ± 0.009				
HLT1/L0	0.699 ± 0.007	0.705 ± 0.015				
HLT1/L0 (old)	0.274 ± 0.006	0.299 ± 0.015				
HLT2/HLT1	0.9898 ± 0.0017	0.983 ± 0.005				
HLT2/HLT1 (old)	0.293 ± 0.013	0.26 ± 0.03				
global	0.250 ± 0.004	0.238 ± 0.008				
global (old)	0.0290 ± 0.0015	0.026 ± 0.003				

green: trigger with new lines

red: trigger without new lines

- Big increase on the efficiencies: a factor ~ 2.4 for HLT1 and ~ 3.5 for HLT2
- Total efficiency increased by a factor ~ 10



$$K^0_S o \pi^0 \mu^+ \mu^-$$

 $\mathcal{B}\left(K_L^0\to\pi^0\mu^+\mu^-\right)$ has a variation of ~ 1 order of magnitude in models with extra dimensions.

$$\begin{split} \mathcal{B}\left(K_L^0 \to \pi^0 l^+ l^-\right)_{\mathsf{SM}} &= \left(C_{\mathsf{dir}}^l \pm C_{\mathsf{int}}^l |\boldsymbol{a}_{\boldsymbol{S}}| + C_{\mathsf{mix}}^l |\boldsymbol{a}_{\boldsymbol{S}}|^2 + C_{\gamma\gamma}^l + C_{\boldsymbol{S}}^l\right) \times 10^{-12} \end{split}$$

 $|a_S| = 1.2 \pm 0.2$ dominates the theoretical uncertainty. Comes from the measurements of $\mathcal{B}\left(K_S^0 \to \pi^0 l^+ l^-\right)$.

Large uncertainties on $\mathcal{B}\left(K_{S}^{0} \rightarrow \pi^{0}\mu^{+}\mu^{-}\right) = 2.9^{+1.5}_{-1.2} \times 10^{-9}$ (NA48) [Phys. Lett. B599 (2004) 197]

Randall-Sundrum model