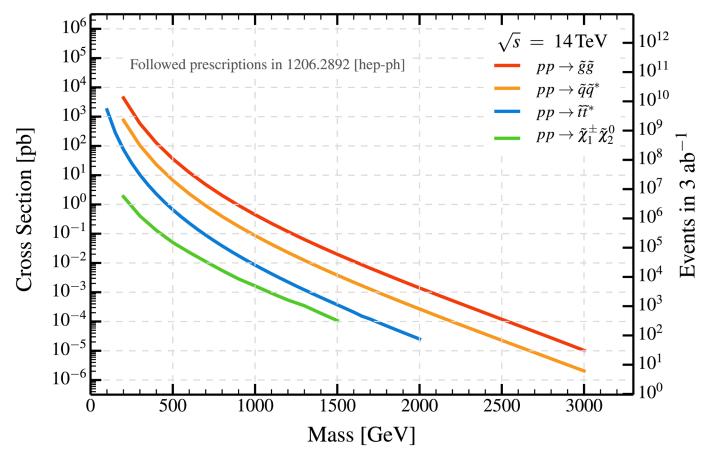
Search for SUSY strong production at CMS at HL-LHC

Kenichi Hatakeyama Baylor University for the CMS Collaboration

HL-LHC Meeting @ Fermilab April 4-6, 2018

SUSY @ HL-LHC


- CMS has explored two goals of the HL-LHC SUSY program:
 - Mass reaches for discovery:
 - □ Strongly-produced SUSY
 - □ Weakly-produced SUSY (see Anadi's talk today)
 - Explore how HL-LHC measurements can illuminate the spectrum of new particles to be discovered in Run 2+3: "Discovery story"

References (for strong production of SUSY):

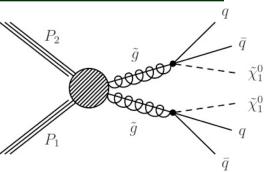
- CMS-PAS-SUS-14-012 & CMS-TDR-15-02 (CMS Phase 2 technical proposal), <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS14012</u>
- CMS-PAS-FTR-13-014, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFTR13014
- CMS-NOTE-13-002, <u>http://arxiv.org/abs/1307.7135</u>

SUSY Cross Section @ 14 TeV

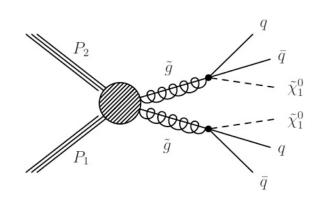
- □ High mass gluinos & light squarks >~2.5 TeV require HL-LHC
- \Box 3rd generation squark cross sections are quite small \rightarrow need high luminosities

Strategy & Disclaimer

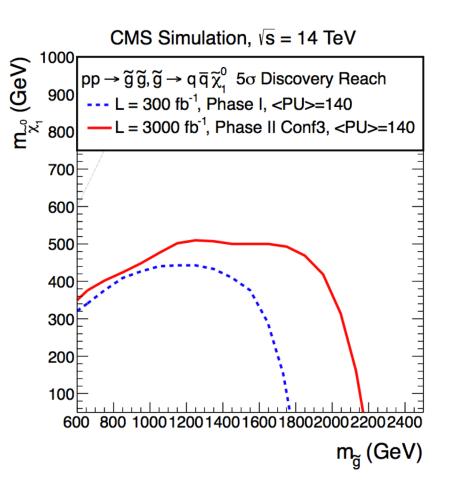
Use the Delphes fast simulation


- The physics object performance in Delphes (v3.0.10) was validated against the full simulation of Phase 2 detector at the time of technical proposal
- The significance calculation was done by the binominal significance (Zbi) for single bin analyses or rootstats tool from the LHC Higgs Combination group for multi-bin analyses
- These projections (related to strong SUSY production for HL-LHC) were made during LS1
 - Baseline selection in most cases "borrowed" from 8 TeV analysis
 - Tuning of few selected key variables and tightening of signal regions done for simple optimization
 - The systematic uncertainties are estimated based on those in 8 TeV analysis
 - This means these projections do not incorporate recent analysis developments adopted (e.g. top tagging, Higgs tagging etc)

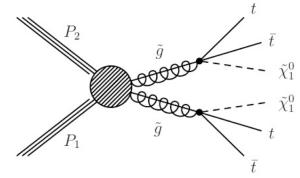
CMS-PAS-FTR-13-014


Jets + MHT Search: Overview

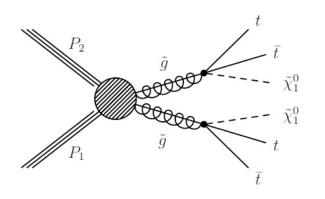
- Search for direct gluino production with multiple jets and large MET
 - Based on 8 TeV analysis CMS-SUS-13-012
- □ Baseline selection
 - Electron and muon veto ($p_T > 10$ GeV and $|\eta| < 2.4$ (μ) or 2.5 (e))
 - Njets > 3 (p_T > 50 GeV and |η| < 2.5)
 - MHT > 200 GeV (with MHT= $|-\Sigma(p_T(jets))|$ with p_T > 30 GeV))
 - HT > 500 GeV ($\Sigma(p_T(jets)$ with $p_T > 50$ GeV and $|\eta| < 2.5)$)
 - ΔΦ(MHT, Jet(1,2,3) > 0.5, 0.5, 0.3
- □ Search region binned in HT & MHT for njets ≥ 6
 - In total, ~5 signal regions are defined. For each signal mass point, the search region that results in the best sensitivity is chosen.
 - c.f. recent 13 TeV search (CMS-SUS-16-033): 184 search regions defined by HT, MHT, Njets, Nb. Sensitivities from different search regions are combined statistically. These differences would make a factor 2-3 differences in xsec easily
- □ Systematic uncertainty: assume 30% similar to 8 TeV analysis

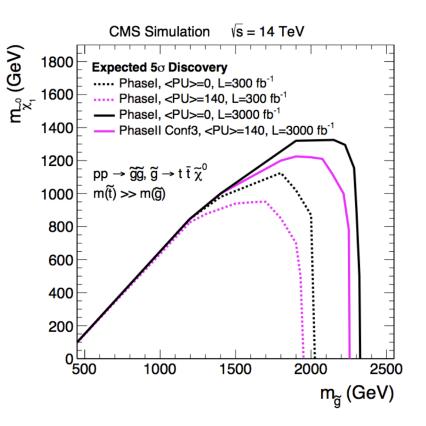


Jets + MHT Search: Results

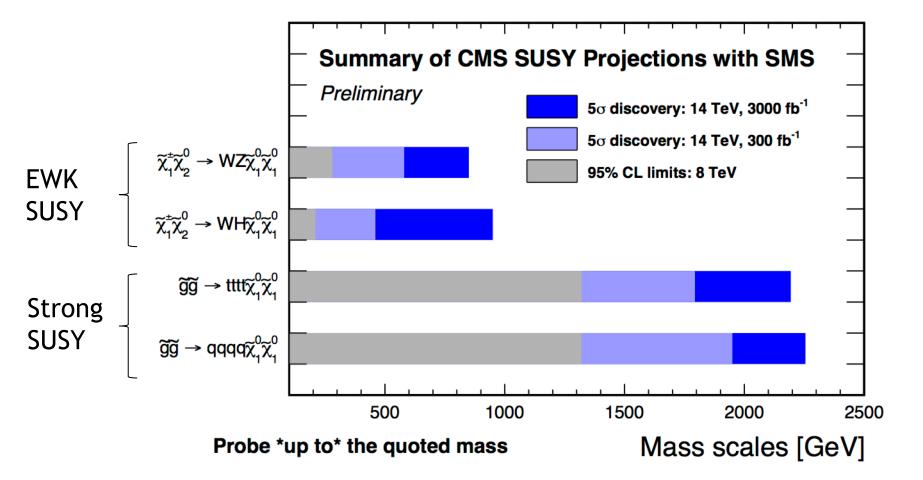

- Sensitive to gluino masses up to
 2.2 TeV and LSP masses up to
 500 GeV
- □ Gain of ~400 GeV in gluino mass discovery reach when going from 300 fb⁻¹ to 3000 fb⁻¹

Single Lepton + b Search: Overview


- 3rd generation squarks expected to be light compared to 1st and 2nd generation
 - Gluinos (if heavier than 3rd generation) can decay with large branching fraction to 3rd generation squarks


- □ Typical signature of such events:
 - Many jets
 - Among them several b-jets
 - Large MET
 - Angle between lepton and W ($\Delta \Phi$) larger for signal than for typical background (semileptonic ttbar), where MET and lepton are correlated

Single Lepton + b Search: Results



- Sensitive to gluino masses up to
 2.3 TeV and LSP masses up to 1.2 TeV
- Gain of ~300 GeV in gluino mass discovery reach when going from 300 fb⁻¹ to 3000 fb⁻¹

Mass Reach Summary

CMS-PAS-SUS-14-012 CMS-TDR-15-02 Discovery Scenario: Overview

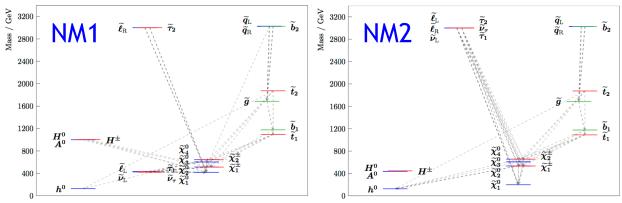
Exploring SUSY model space

□ Explored:

- Five different models.
- Nine different experimental signatures.

Sp
signature
experimental
exp
Exploring

ace

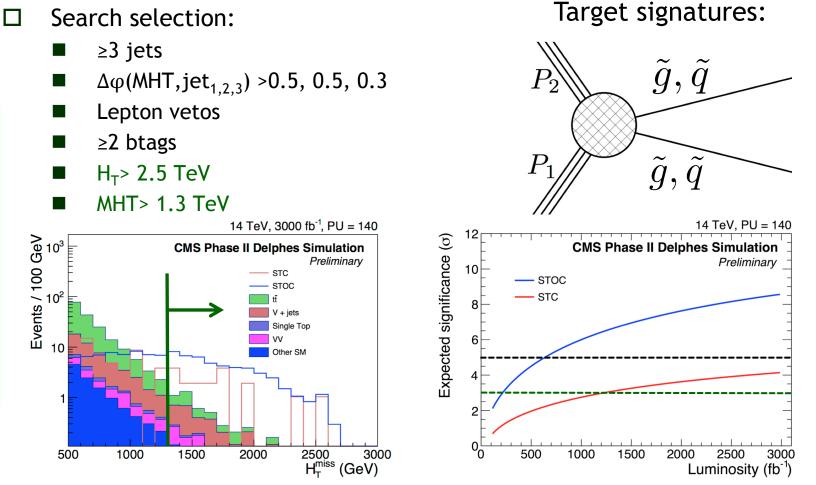

Analysis	Luminosity			Model	Model			
	(fb^{-1})	NM1	NM2	NM3	STC	STO		
all-hadronic ($H_{\rm T}$ - $H_{\rm T}^{\rm miss}$) search	300							
-	3000							
all-hadronic (M_{T2}) search	300							
	3000							
all-hadronic \widetilde{b}_1 search	300							
	3000							
1-lepton \tilde{t}_1 search	300							
-	3000							
monojet \tilde{t}_1 search	300							
-	3000							
$m_{\ell^+\ell^-}$ kinematic edge	300							
	3000							
multilepton + b-tag search	300							
	3000							
multilepton search	300							
	3000							
ewkino WH search	300							
	3000							

- Different types of SUSY models lead to different patterns of discoveries in different final states after different amounts of data.
- □ HL-LHC measurements can be crucial to illuminate a Run 3 discovery, and thus answer fundamental questions about gauge hierarchy or dark matter.

CMS-PAS-SUS-14-012 CMS-TDR-15-02

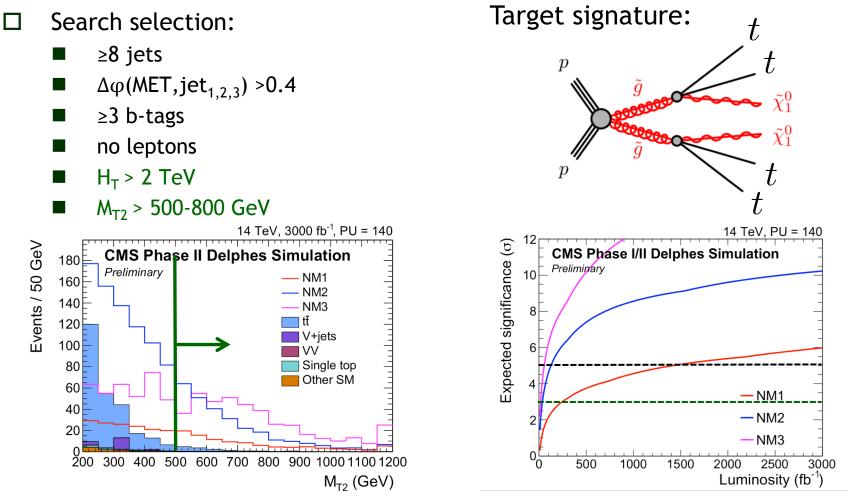
MSSM Models

- Natural SUSY inspired models (NM1,2,3) and co-annihilation models (stop-coannihilation STOC, stau-coannihilation STC) motivated by dark matter
- The model should contain production and decay channels that could be discovered with up to 300 fb⁻¹: more features will be revealed with 3000 fb⁻¹


3600 / GeV 3200 STC 2800 $m(\tilde{\tau}_1) - m(\tilde{\chi}_1^0) = 7 \text{ GeV}$ 2400 2000 1600 t_2 b_2 1200 800 400 0 4400 H^{\pm} 3200 2800 2400 STOC 2000 1600 $m(\tilde{t}_1) - m(\tilde{\chi}_1^0) = 6 \text{ GeV}$ 1200 800 $\widetilde{\chi}_2^0$ $\widetilde{\chi}_1^0$ 400 Mass / GeV 3200 NM3 2800 2400 2000 1600 1200 800 400

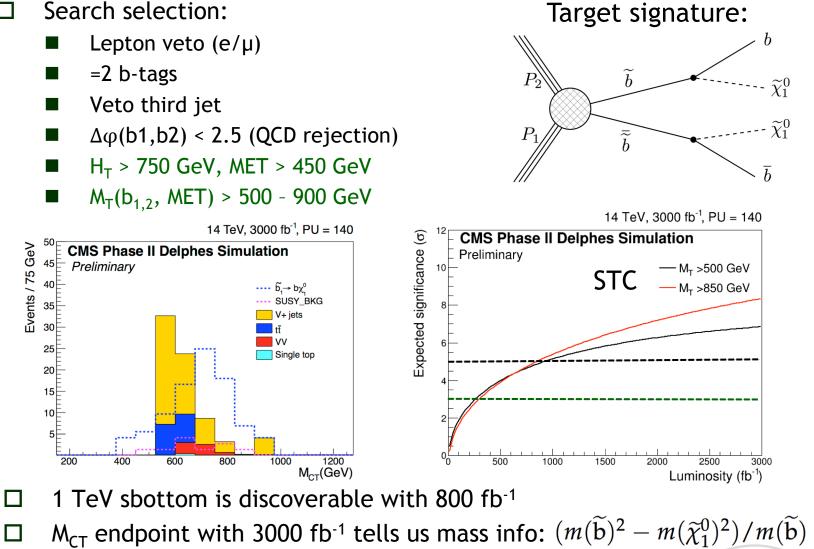
STOC, STC searching for gluinos and squarks

CMS-PAS-SUS-14-012 CMS-TDR-15-02 All-hadronic Search w/ HT+MHT


□ 2.1 TeV gluino in STOC model is accessible with 600 fb⁻¹ even with small ΔM(stop,LSP)
 □ Gluinos & Light squark of ~ 3 TeV in STC is ~discoverable w/ 3000 fb⁻¹

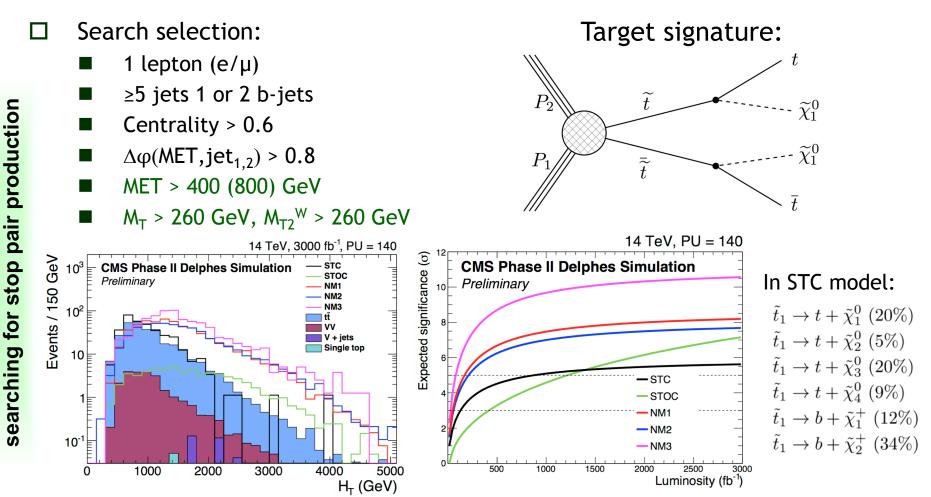
April 6, 2018

CMS-PAS-SUS-14-012 CMS-TDR-15-02 All-hadronic Search w/ MT2



- Large mass gaps in NM3 \rightarrow massive m_{T2} tails
 - Distinctive kinematic features indicate the structure of SUSY spectrum

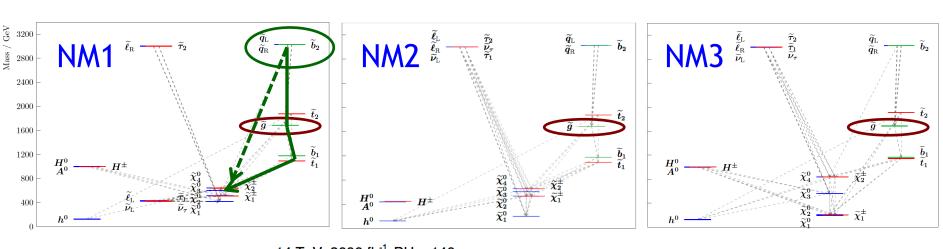
CMS-PAS-SUS-14-012 CMS-TDR-15-02 Search for Sbottom in bb+MET

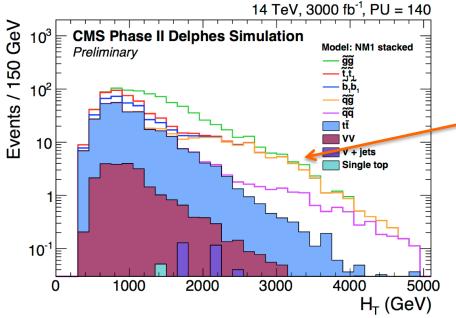

14

CMS-PAS-SUS-14-012 CMS-TDR-15-02

STC, NM1, NM2, NM3

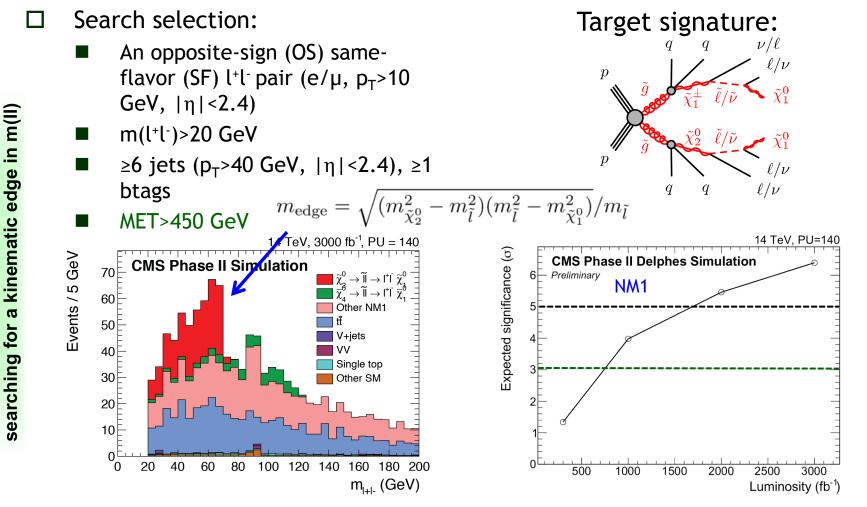
1-lepton Search




For this stau-coannihilation (STC) model, 70% of the signal in the 1lepton search comes from direct top squark production

CMS-PAS-SUS-14-012 CMS-TDR-15-02

1-lepton Search

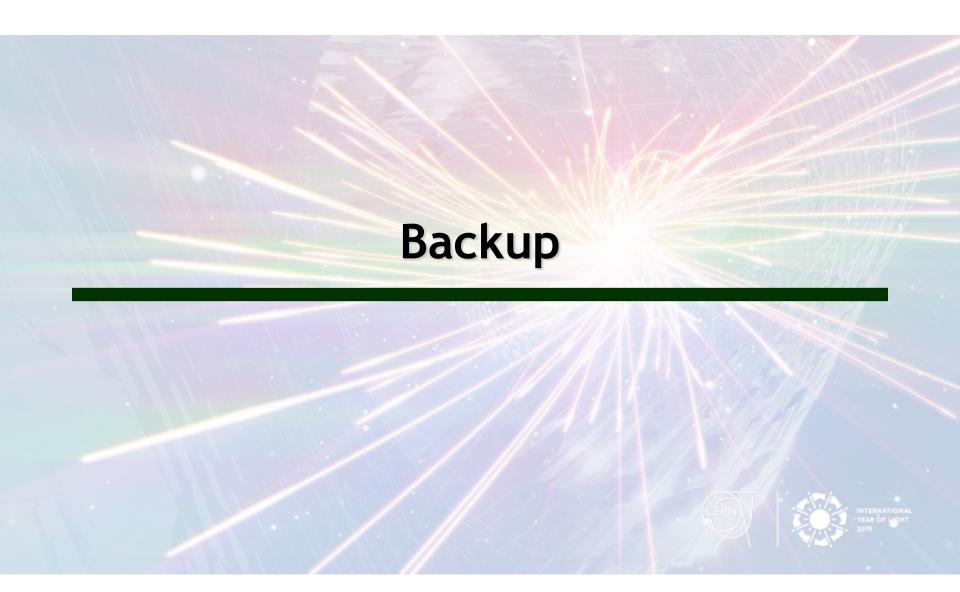

First observation comes from Gluino pair production

Gluino-squark production of 3TeV u/d/s squarks becomes visible with 3000 fb⁻¹

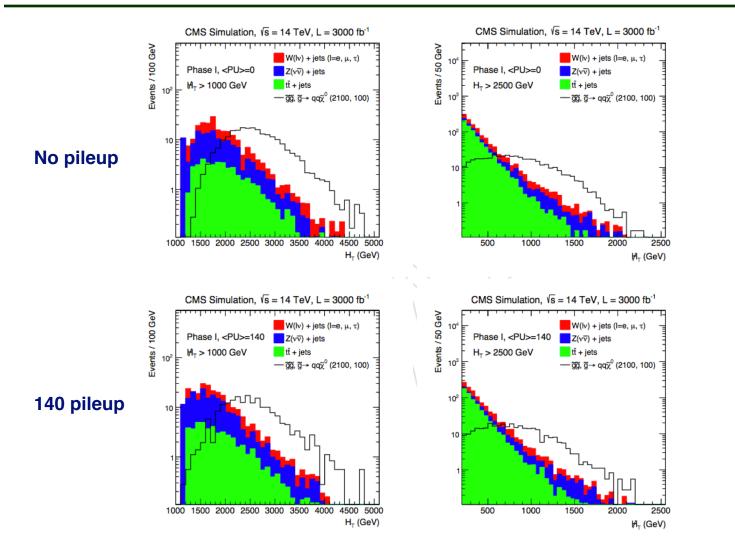
Observations in additional final states w/ HL-LHC

ЫM

CMS-PAS-SUS-14-012 CMS-TDR-15-02 M(l+l-) Kinematic Edge Search


HL-LHC data can shed light on the EWK sector SUSY mass information, after the first discovery

Conclusions

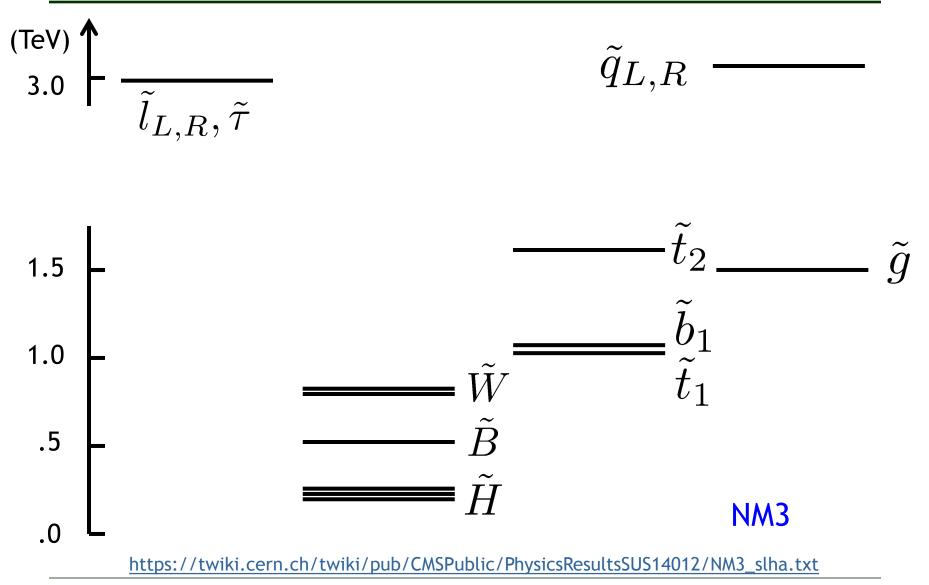


- □ In spite of absence of specific evidence, the motivation for SUSY has remained strong
 - Continues to be the most convincing framework to explain dark matter.
 - Discovery of the Higgs has given new urgency to find a "natural" explanation of the gauge hierarchy.
- We have investigated the mass reach for SUSY particles in the simplified models
 - We expect up to ~500 GeV mass extension with HL-LHC
 - The projections are likely on the conservative side, as we can't predict what analysis improvements we will make
- □ We have explored how HL-LHC measurements can illuminate the spectrum of the new particles discovered in Run 2+3
 - Several major conclusions are:
 - □ The explored benchmark models would show at least some indication of excess w/ <300 fb⁻¹.
 - In order to map out the properties of a particle spectrum, it is essential to have a full pattern of results obtained at the highest integrated luminosities.

CMS-PAS-FTR-13-014

Jets + MHT Search

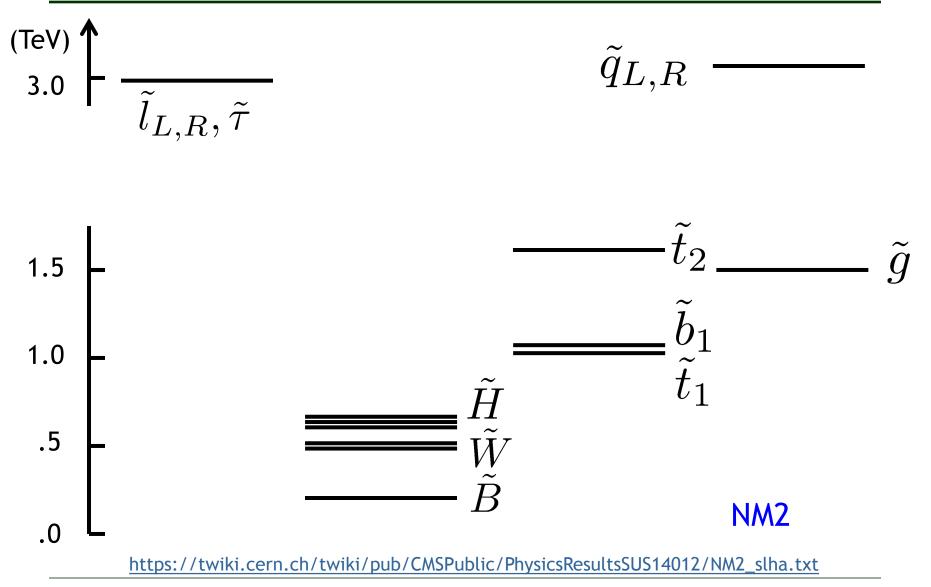
This analysis is not very pileup-dependent



Benchmark SUSY Models

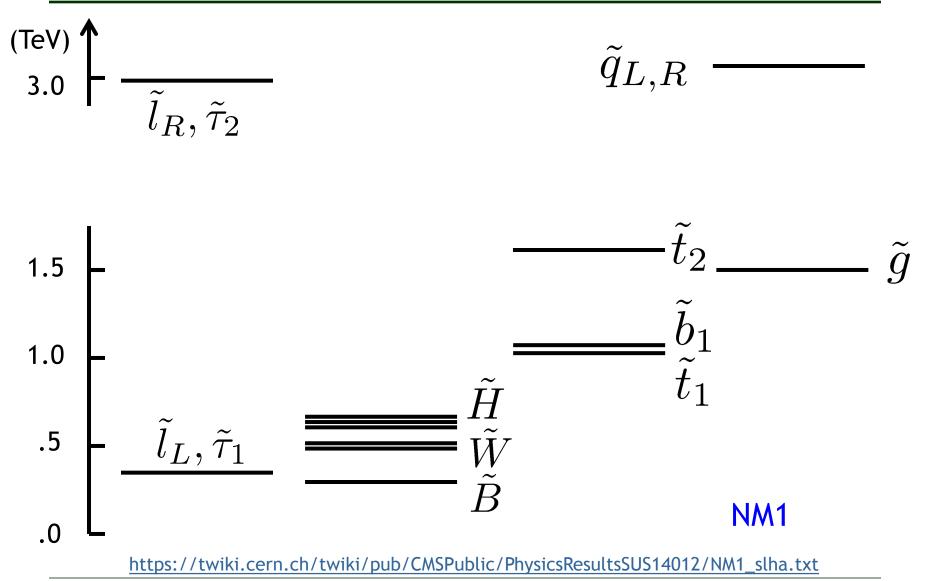
- Five benchmark full-spectrum SUSY models were constructed
 - The model should not be already excluded
 - The model should not be already excluded by existing SUSY
 & BSM higgs searches, and be consistent with existing measurements of the 125 GeV higgs, relic density, etc.
 - The model should contain production and decay channels that could be discovered with up to 300 fb⁻¹
 - The model should be well theoretically motivated
 - Natural SUSY inspired models (NM's) and co-annihilation models motivated by dark matter

Natural SUSY Models (NM's)



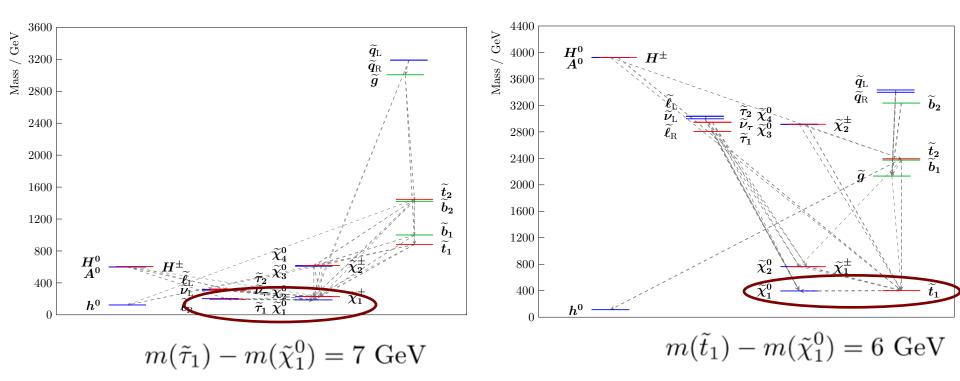
April 6, 2018

Natural SUSY Models (NM's)



April 6, 2018

Natural SUSY Models (NM's)



April 6, 2018

Stau coannihilation model (STC)

Stop coannihilation model (STOC)

https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsSUS14012/STC_slha.txt https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsSUS14012/STOC_slha.txt

April 6, 2018

SUSY Particle Decays

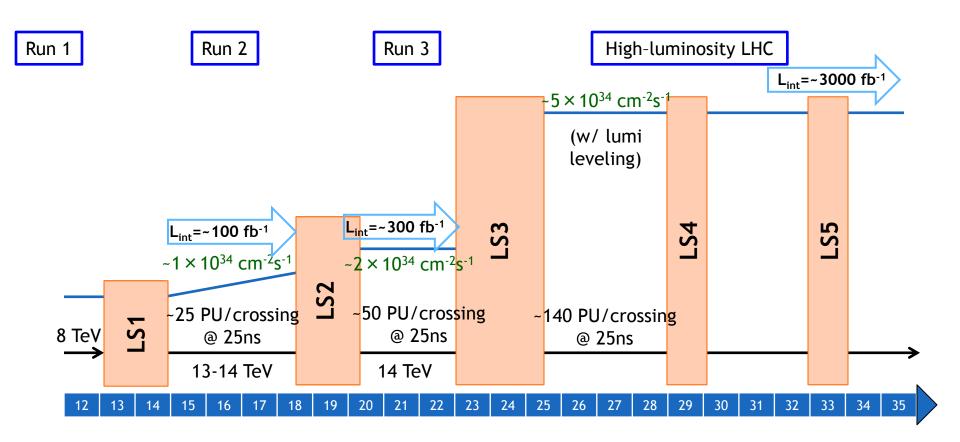
Decay	Branching fraction					Decay	Branching fraction				
	NM1	NM2	NM3	STC	STOC		NM1	NM2	NM3	STC	STOC
$\widetilde{g} \rightarrow \widetilde{t}_1 \overline{t}, \widetilde{t}_1^* t$	59%	60%	53%	28%	50%	$\widetilde{\chi}^+_1 o \ell^+ \widetilde{ u}$	56%	-	-	-	-
$\widetilde{g} ightarrow \widetilde{b}_1 \overline{b}, \widetilde{b}_1^* b$	41%	40%	47%	28%	50%	$\widetilde{\chi}_1^+ o u \widetilde{\ell}^+$	43%	-	-	100% (only $\nu_{\tau} \widetilde{\tau}_{1}^{+}$)	-
$\widetilde{g} \rightarrow \widetilde{t}_2 \overline{t}, \widetilde{t}_2^* \overline{t}$	-	-	-	22%	-	$\widetilde{\chi}_1^+ o \mathrm{W}^+ \widetilde{\chi}_1^0$	1.8%	100%	-	-	-
$\widetilde{g} \rightarrow \widetilde{b}_2 \overline{b}, \widetilde{b}_2^* b$	-	-	-	21%	-	$\widetilde{\chi}^+_1 o { m q} \overline{ m q}' \widetilde{\chi}^0_1$	-	-	70%	-	-
$\widetilde{t_1} \rightarrow t \widetilde{\chi}_1^0$	0.6%	1.5%	39%	20%	-	$\widetilde{\chi}_1^+ ightarrow \ell^+ u \widetilde{\chi}_1^0$	-	-	30%	-	-
$\widetilde{\mathrm{t}}_1 ightarrow \mathrm{t} \widetilde{\chi}_2^0$	13%	13%	41%	5.4%	-	$\widetilde{\chi}_1^+ \to \widetilde{\mathfrak{t}}_1 \overline{\mathfrak{b}}$	-	-	-	-	100%
$\widetilde{\mathfrak{t}}_1 ightarrow \mathfrak{t} \widetilde{\chi}_3^{\overline{0}}$	22%	23%	1.3%	20%	-	$\widetilde{\chi}_2^0 o \ell^+ \widetilde{\ell}^-$, $\ell^- \widetilde{\ell}^+$	59%	-	-	100%	-
$\widetilde{\mathfrak{t}}_1 ightarrow \mathfrak{t} \widetilde{\chi}_4^0$	30%	30%	5.5%	9.2%	-	$\widetilde{\chi}^0_2 ightarrow \widetilde{ u} ar{ u}, \widetilde{ u}^* u$	41%	-	-	-	-
$\widetilde{\mathfrak{t}}_1 ightarrow \mathrm{b} \widetilde{\chi}_1^{\hat{+}}$	16%	12%	2.1%	12%	-	$\widetilde{\chi}_2^0 ightarrow \mathrm{Z} \widetilde{\chi}_1^0$	< 0.1%	12%	-	-	-
$\widetilde{\mathfrak{t}}_1 \rightarrow b\widetilde{\chi}_2^+$	18%	21%	11%	34%	-	${\widetilde \chi}_2^0 o { m H} {\widetilde \chi}_1^0$	-	88%	-	-	-
$\widetilde{\mathfrak{t}}_1 ightarrow \mathrm{c} \widetilde{\chi}_1^{ar{0}}$	-	-	-	-	99%	$\widetilde{\chi}_2^0 ightarrow { m q} { m q} { m q} \widetilde{\chi}_1^0$	-	-	56%	-	-
$\widetilde{b}_1 \rightarrow b \widetilde{\chi}_1^0$	1.5%	1.0%	1.3%	67%	-	${\widetilde \chi}^0_2 {\longrightarrow} \ell^+ \ell^- {\widetilde \chi}^0_1$	-	-	10%	-	-
$\widetilde{\mathrm{b}}_1 ightarrow \mathrm{b} \widetilde{\chi}_2^{\hat{0}}$	11%	10%	1.0%	2.2%	5.7%	$\widetilde{\chi}^0_2 ightarrow u ar{ u} \widetilde{\chi}^0_1$	-	-	21%	-	-
$\widetilde{\mathrm{b}}_1 ightarrow \mathrm{b} \widetilde{\chi}_3^{ar{0}}$	0.6%	0.6%	0.4%	8.2%	-	$\widetilde{\chi}_2^0 \to q \overline{q}' \widetilde{\chi}_1^{\pm}$	-	-	8.8%	-	-
$\widetilde{\mathbf{b}}_1 \to \mathbf{b} \widetilde{\chi}_4^0$	4.5%	5.7%	5.7%	7.6%	-	$\widetilde{\chi}_2^0 \to \ell^+ \nu \widetilde{\chi}_1^-, \ell^- \bar{\nu} \widetilde{\chi}_1^+$	-	-	4.0%	-	-
$\widetilde{b}_1 \rightarrow t \widetilde{\chi}_1^-$	32%	34%	80%	3.4%	11%	$\widetilde{\chi}_2^0 \rightarrow \widetilde{t_1} \overline{t}, \widetilde{t}_1^* t$	-	-	-	-	100%
$\widetilde{\widetilde{b}}_1 \to t \widetilde{\chi}_2^-$	49%	48%	12%	12%	-						
$\widetilde{b}_1 \rightarrow W^- \widetilde{t}_1$	0.4%	0.7%	-	< 0.1%	65%						
$\widetilde{b}_1 \to b \widetilde{g}$	-	-	-	-	18%						

Top squark decay modes strongly depend on ewkino spectrum and composition

SUSY Particle Decays

Decay			Branchi	ng fraction		Decay	Branching fraction				
,	NM1	NM2	NM3	STC	STOC		NM1	NM2	NM3	STC	STOC
$\widetilde{g} \rightarrow \widetilde{t}_1 \overline{t}, \widetilde{t}_1^* t$	59%	60%	53%	28%	50%	$\widetilde{\chi}^+_1 o \ell^+ \widetilde{ u}$	56%	-	-	-	-
$\widetilde{\mathbf{g}} ightarrow \widetilde{\mathbf{b}}_1 \overline{\mathbf{b}}, \widetilde{\mathbf{b}}_1^* \mathbf{b}$	41%	40%	47%	28%	50%	$\widetilde{\chi}_1^+ o u \ell^+$	43%	-	-	100% (only $\nu_{\tau} \widetilde{\tau}_1^+$)	-
$\widetilde{g} \rightarrow \widetilde{t}_2 \overline{t}, \widetilde{t}_2^* \overline{t}$	-	-	-	22%	-	$\widetilde{\chi}^+_1 ightarrow \mathrm{W}^+ \widetilde{\chi}^0_1$	1.8%	100%	-	-	-
$\widetilde{g} \rightarrow \widetilde{b}_2 \overline{b}, \widetilde{b}_2^* b$	-	-	-	21%	-	$\widetilde{\chi}^+_1 ightarrow { m q} { m q}' \widetilde{\chi}^0_1$	-	-	70%	-	-
$\widetilde{t}_1 \rightarrow t \widetilde{\chi}_1^0$	0.6%	1.5%	39%	20%	-	$\widetilde{\chi}_1^+ ightarrow \ell^+ u \widetilde{\chi}_1^0$	-	-	30%	-	-
$\widetilde{\mathfrak{t}}_1 o \mathfrak{t} \widetilde{\chi}_2^{ ilde{0}}$	13%	13%	41%	5.4%	-	$\widetilde{\chi}_1^+ \to \widetilde{\mathfrak{t}}_1 \mathfrak{b}$	-	-	-	-	100%
$\widetilde{\mathfrak{t}}_1 ightarrow \mathfrak{t} \widetilde{\chi}_3^{ar{0}}$	22%	23%	1.3%	20%	-	${\widetilde \chi}_2^0 o \ell^+ {\widetilde \ell}^-$, $\ell^- {\widetilde \ell}^+$	59%	-	-	100%	-
$\widetilde{\mathfrak{t}}_1 ightarrow \mathfrak{t} \widetilde{\chi}_4^0$	30%	30%	5.5%	9.2%	-	$\widetilde{\chi}^0_2 o \widetilde{ u} ar{ u}, \widetilde{ u}^* u$	41%	-	-	-	-
$\widetilde{\mathfrak{t}}_1 ightarrow \mathrm{b} \widetilde{\chi}_1^{ ilde{+}}$	16%	12%	2.1%	12%	-	$\widetilde{\chi}_2^0 ightarrow \mathrm{Z} \widetilde{\chi}_1^0$	< 0.1%	12%	-	-	-
$\widetilde{\mathfrak{t}}_1 ightarrow \mathrm{b} \widetilde{\chi}_2^+$	18%	21%	11%	34%	-	$\widetilde{\chi}^0_2 ightarrow { m H} \widetilde{\chi}^0_1$	-	88%	-	-	-
$\widetilde{\mathfrak{t}}_1 o \mathrm{c} \widetilde{\chi}_1^{ar{0}}$	-	-	-	-	99 %	$\widetilde{\chi}_2^0 ightarrow { m q} { m q} { m q} \widetilde{\chi}_1^0$	-	-	56%	-	-
$\widetilde{\mathrm{b}}_1 ightarrow \mathrm{b} \widetilde{\chi}_1^0$	1.5%	1.0%	1.3%	67%	-	$\widetilde{\chi}^0_2 o \ell^+ \ell^- \widetilde{\chi}^0_1$	-	-	10%	-	-
$\widetilde{b}_1 \rightarrow b \widetilde{\chi}_2^{\hat{0}}$	11%	10%	1.0%	2.2%	5.7%	$\widetilde{\chi}_2^0 ightarrow u \overline{ u} \widetilde{\chi}_1^0$	-	-	21%	-	-
$\widetilde{b}_1 \rightarrow b \widetilde{\chi}_3^{\overline{0}}$	0.6%	0.6%	0.4%	8.2%	-	$\widetilde{\chi}_2^0 \to q \overline{q}' \widetilde{\chi}_1^{\pm}$	-	-	8.8%	-	-
$\widetilde{b}_1 ightarrow b \widetilde{\chi}_4^0$	4.5%	5.7%	5.7%	7.6%	-	$\widetilde{\chi}_2^0 \rightarrow \ell^+ \nu \widetilde{\chi}_1^-, \ell^- \overline{\nu} \widetilde{\chi}_1^+$	-	-	4.0%	-	-
$\widetilde{b}_1 \rightarrow t \widetilde{\chi}_1^-$	32%	34%	80%	3.4%	11%	$\widetilde{\chi}_2^0 \rightarrow \widetilde{\widetilde{t}_1} \overline{t}, \widetilde{t}_1^* t$	-	-	-	-	100%
$\widetilde{\widetilde{b}}_1 \to t \widetilde{\chi}_2^-$	49%	48%	12%	12%	-						
$\tilde{b}_1 \rightarrow W^- \tilde{t}_1$	0.4%	0.7%	-	< 0.1%	65%						
$\widetilde{b}_1 \to b \widetilde{g}$	-	-	-	-	18%						

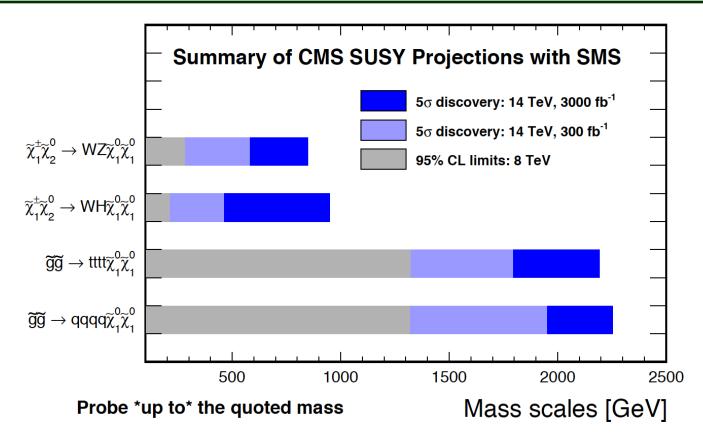
Bottom squarks often decay into a mode including a top quark, making it challenging to distinguish bottom squark from top squark


SUSY Particle Decays

Decay			Branchi	ng fraction		Decay			Branch	ing fraction	
-	NM1	NM2	NM3	STC	STOC		NM1	NM2	NM3	STC	STOC
$\widetilde{g} \rightarrow \widetilde{t}_1 \overline{t}, \widetilde{t}_1^* t$	59%	60%	53%	28%	50%	$\widetilde{\chi}^+_1 o \ell^+ \widetilde{ u}$	56%	-	-	-	-
$\widetilde{g} \rightarrow \widetilde{b}_1 \overline{b}, \widetilde{b}_1^* b$	41%	40%	47%	28%	50%	$\widetilde{\chi}_1^+ o u \widetilde{\ell}^+$	43%	-	-	100% (only $\nu_{\tau} \widetilde{\tau}_{1}^{+}$)	-
$\widetilde{g} \rightarrow \widetilde{t}_2 \overline{t}, \widetilde{t}_2^* \overline{t}$	-	-	-	22%	-	$\widetilde{\chi}^+_1 o \mathrm{W}^+ \widetilde{\chi}^0_1$	1.8%	100%	-	-	-
$\widetilde{\widetilde{g}} \rightarrow \widetilde{\widetilde{b}}_2 \overline{b}, \widetilde{\widetilde{b}}_2^* b$	-	-	-	21%	-	$\widetilde{\chi}_1^+ o \mathrm{q} \overline{\mathrm{q}}' \widetilde{\chi}_1^0$	-	-	70%	-	-
$\widetilde{t_1} \rightarrow t \widetilde{\chi}_1^0$	0.6%	1.5%	39%	20%	-	$\widetilde{\chi}^+_1 ightarrow \ell^+ u \widetilde{\chi}^0_1$	-	-	30%	-	-
$\widetilde{\mathfrak{t}}_1 ightarrow \mathfrak{t} \widetilde{\chi}_2^{ ilde{0}}$	13%	13%	41%	5.4%	-	$\widetilde{\chi}_1^+ ightarrow \widetilde{\mathfrak{t}}_1 \overline{\mathfrak{b}}$	-	-	-	-	100%
$\widetilde{\mathfrak{t}}_1 ightarrow \mathfrak{t} \widetilde{\chi}_3^{\overline{0}}$	22%	23%	1.3%	20%	-	$\widetilde{\chi}^0_2 o \ell^+ \widetilde{\ell}^-, \ell^- \widetilde{\ell}^+$	59%	-	-	100%	-
$\widetilde{\mathfrak{t}}_1 ightarrow \mathfrak{t} \widetilde{\chi}_4^0$	30%	30%	5.5%	9.2%	-	$\widetilde{\chi}^0_2 o \widetilde{ u} ar{ u}, \widetilde{ u}^* u$	41%	-	-	-	-
$\widetilde{\mathfrak{t}}_1 ightarrow \mathfrak{b} \widetilde{\chi}_1^{+}$	16%	12%	2.1%	12%	-	$\widetilde{\chi}_2^0 o Z \widetilde{\chi}_1^0$	< 0.1%	12%	-	-	-
$\widetilde{\mathfrak{t}}_1 ightarrow b \widetilde{\chi}_2^+$	18%	21%	11%	34%	-	${\widetilde \chi}_2^0 o { m H} {\widetilde \chi}_1^0$	-	88%	-	-	-
$\widetilde{\mathfrak{t}}_1 ightarrow \mathrm{c} \widetilde{\chi}_1^{0}$	-	-	-	-	99%	$\widetilde{\chi}^0_2 ightarrow { m q} \overline{q} \widetilde{\chi}^0_1$,	-	-	56%	-	-
$\widetilde{b}_1 \rightarrow b \widetilde{\chi}_1^0$	1.5%	1.0%	1.3%	67%	-	${\widetilde \chi}^0_2 o \ell^+ \ell^- {\widetilde \chi}^0_1$	-	-	10%	-	-
$\widetilde{\mathrm{b}}_1 ightarrow \mathrm{b} \widetilde{\chi}_2^0$	11%	10%	1.0%	2.2%	5.7%	$\widetilde{\chi}^0_2 ightarrow u ar{ u} \widetilde{\chi}^0_1$	-	-	21%	-	-
$\widetilde{\mathrm{b}}_1^1 ightarrow \mathrm{b} \widetilde{\chi}_3^0$	0.6%	0.6%	0.4%	8.2%	-	$\widetilde{\chi}_2^0 ightarrow { m q} { m q}' \widetilde{\chi}_1^\pm$	-	-	8.8%	-	-
$\widetilde{b}_1 ightarrow b \widetilde{\chi}_4^0$	4.5%	5.7%	5.7%	7.6%	_	$\widetilde{\chi}_{2}^{0} ightarrow \ell^{+} \nu \widetilde{\chi}_{1}^{-}, \ell^{-} \overline{\nu} \widetilde{\chi}_{1}^{+}$	-	-	4.0%	-	-
$\widetilde{\widetilde{b}}_1 ightarrow t \widetilde{\chi}_1^-$	32%	34%	80%	3.4%	11%	$\widetilde{\chi}_2^0 ightarrow \widetilde{\mathfrak{t}}_1^- \overline{\mathfrak{t}}, \widetilde{\mathfrak{t}}_1^* \mathfrak{t}$	-	-	-	-	100%
$\widetilde{\widetilde{b}}_1 \to t \widetilde{\chi}_2^-$	49%	48%	12%	12%	_						
~					65%						
~	0.4 /0	0.7 /0	-								
$egin{array}{c} \widetilde{b}_1 ightarrow W^- \widetilde{t}_1 \ \widetilde{b}_1 ightarrow b \widetilde{g} \end{array}$	0.4% -	0.7% -	-	< 0.1%	65% 18%						

Obviously ewkino decays strongly depend on the ewkino spectrum and composition

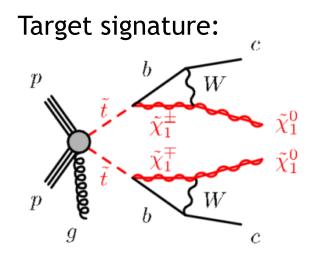
LHC Evolution



Based on LHC schedule approved by CERN management, LHC experiment spokespersons and technical coordinators on Dec 2, 2013 Also, Bordry at ECFA HL-LHC workshop & Gregor.

April 6, 2018

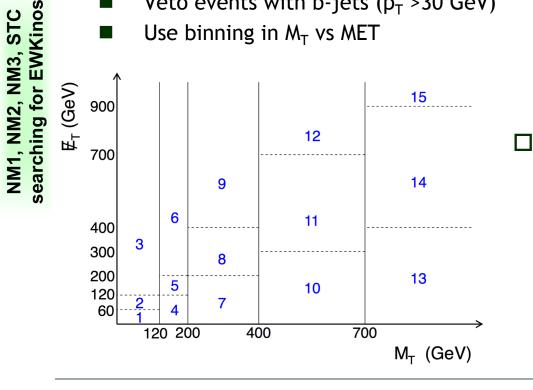
SUSY Discovery Potentials w/ SMS

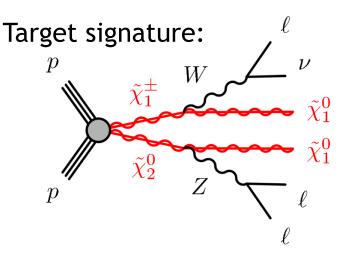


- □ HL-LHC increases mass reach for pair produced SUSY particles by up to 500 GeV.
- □ Largest relative gains in weak production processes.

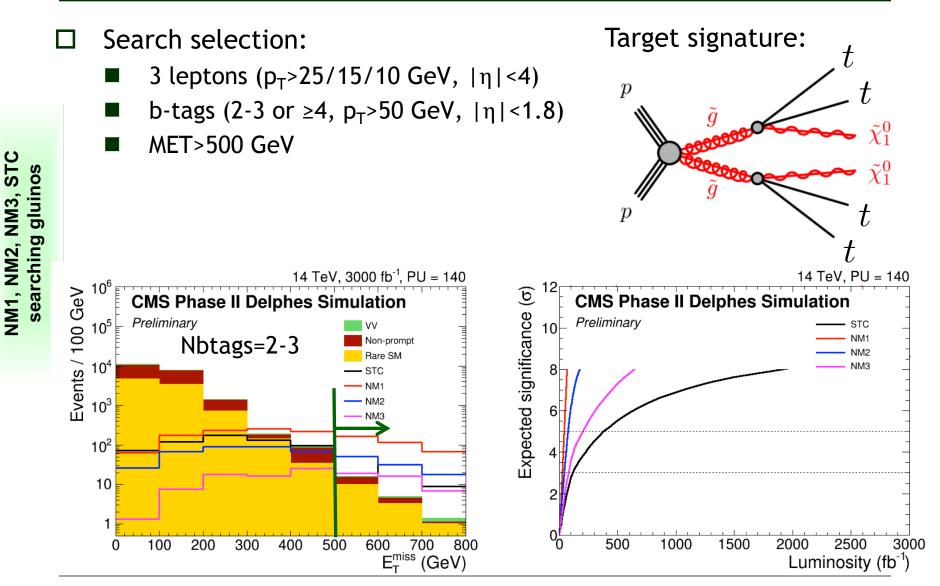
Monojet Stop Search

- Search selection:
 - p_T(j₁) >110 GeV, |η|<2.4</p>
 - $\Delta \phi(j_1, j_2) < 1.8$
 - Veto 3rd jet (p_T > 100 GeV, |η| < 4.5)</p>
 - Electron/muon veto
 - MET > 600 GeV
 - p_T(j₁) > 900 GeV

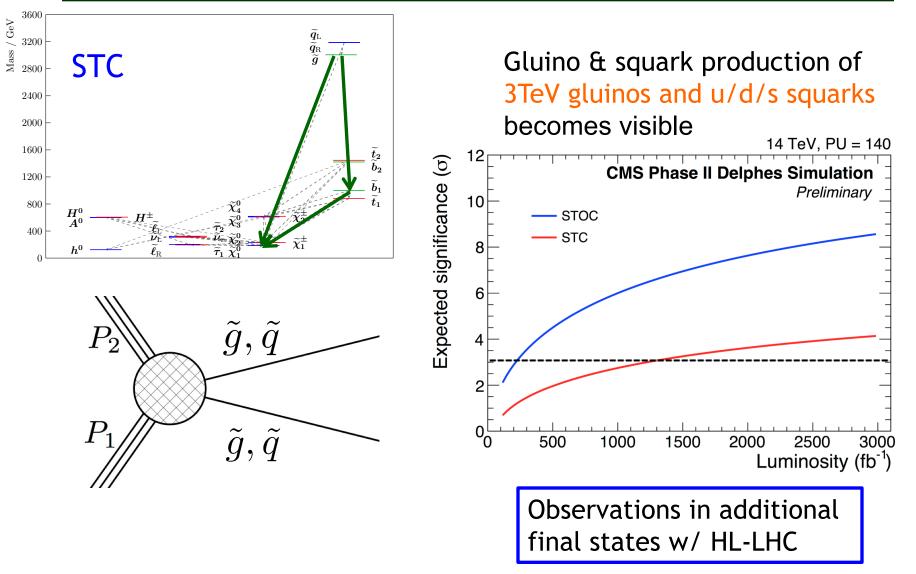


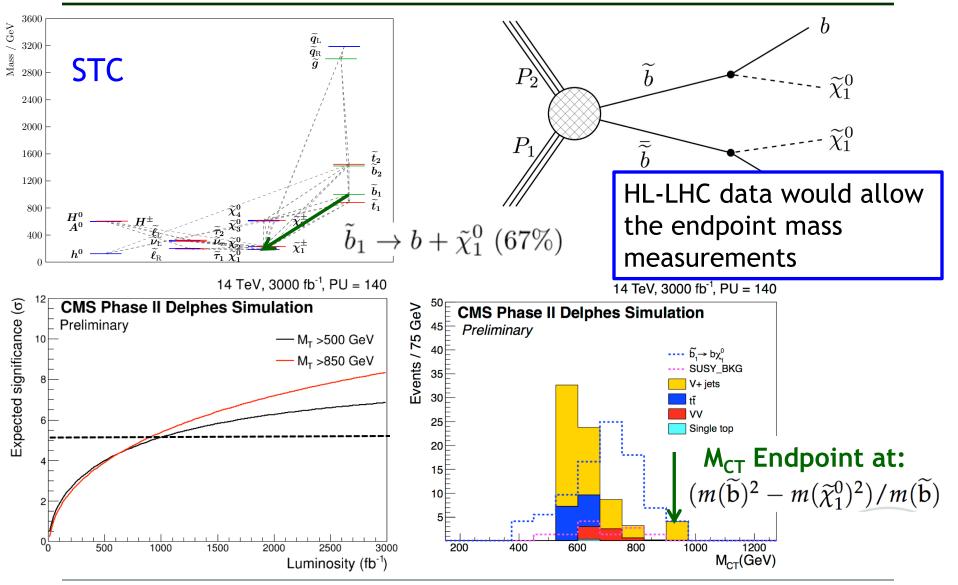

Search w/ Trileptons + MET

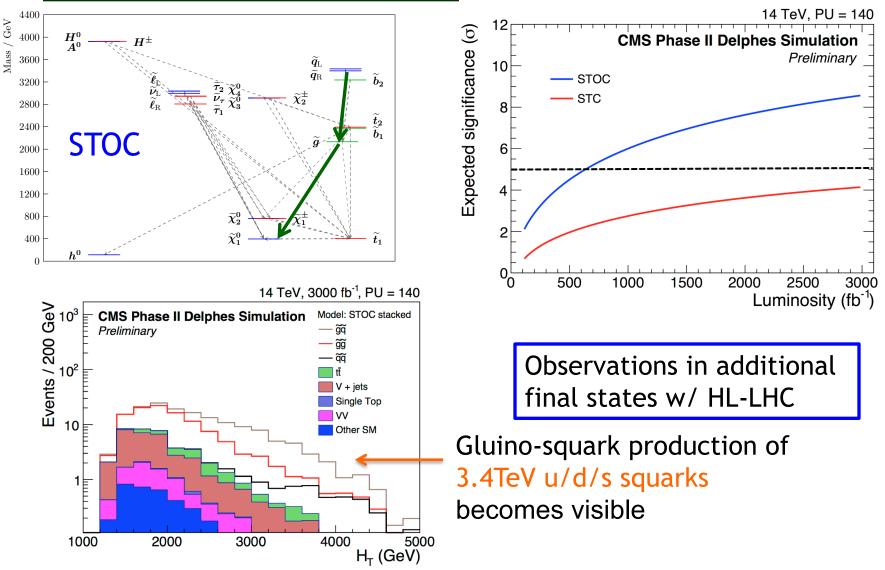
- 3ℓ (p_T>25/15/10 GeV) |η|<4
- OSSF (m_{μ}) pair closest to Z(91 GeV):
 - On-Z: 75 GeV < $m_{\ell\ell}$ < 105 GeV П
 - Off-Z: 105 GeV $< m_{\mu}$
 - Veto events with b-jets ($p_T > 30 \text{ GeV}$)
 - Use binning in M_{T} vs MET

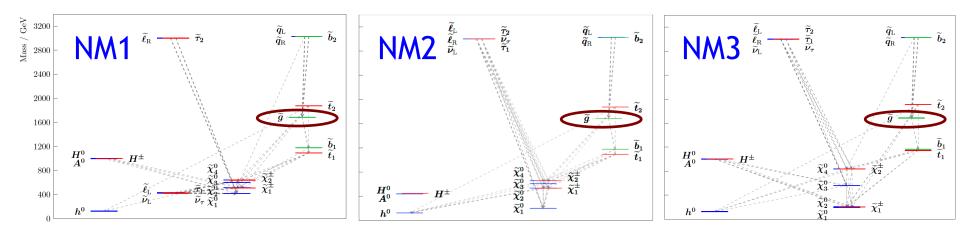


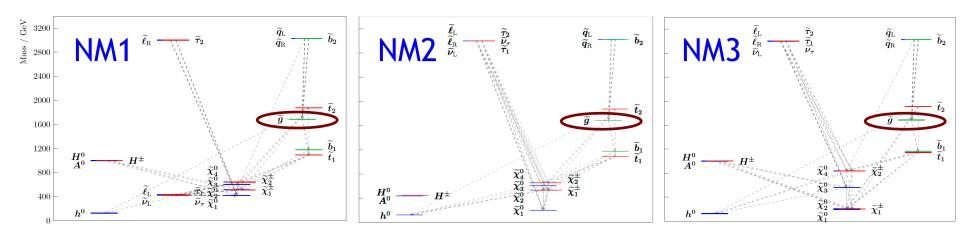
- Additional tighter search selection for heavy C1/N2:
 - 3ℓ (p_T>120/90/140 GeV)
 - Veto events with a jet $(p_{T} > 100 \text{ GeV})$

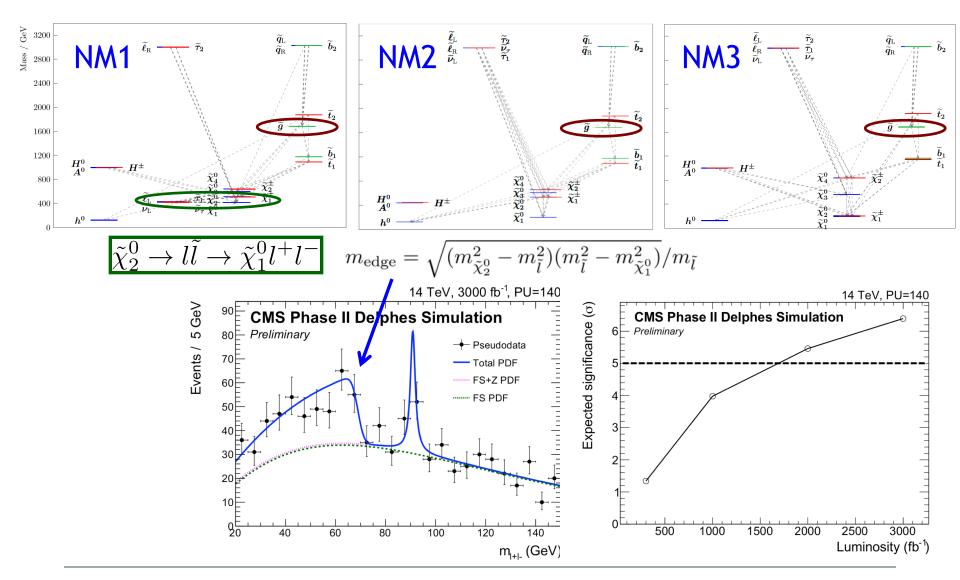

Searches w/ Trileptons + b-tags


Discovery Scenarios: STC

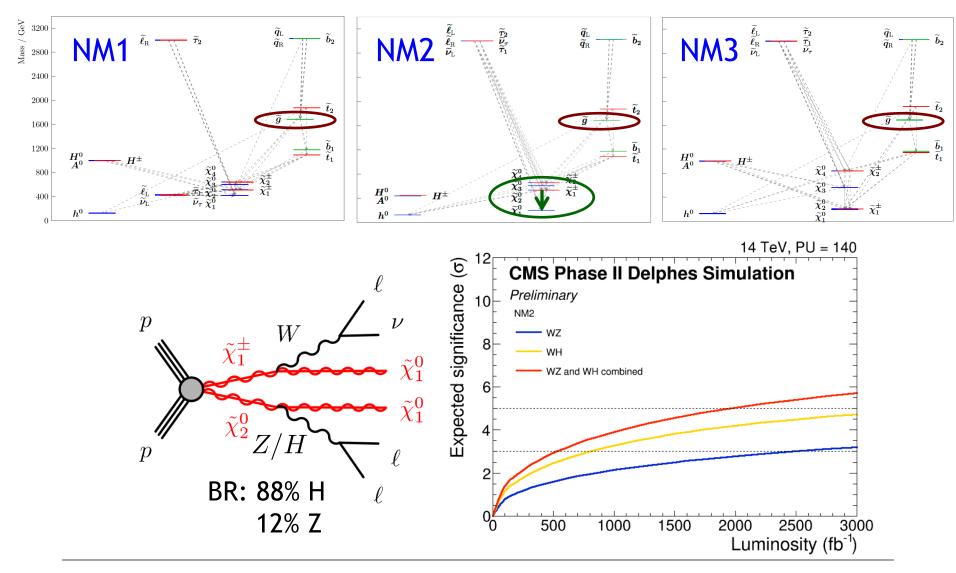

Discovery Scenarios: STC

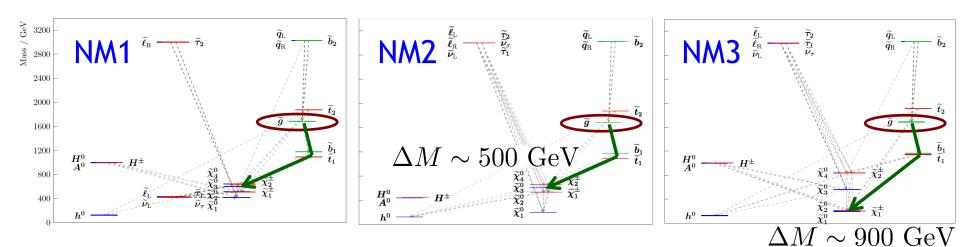


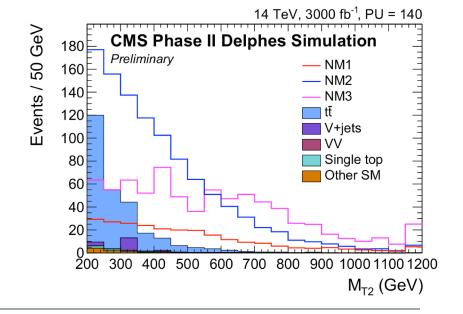

Discovery Scenarios: STOC

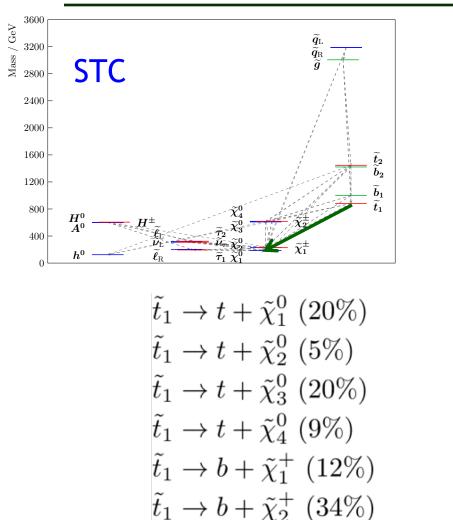


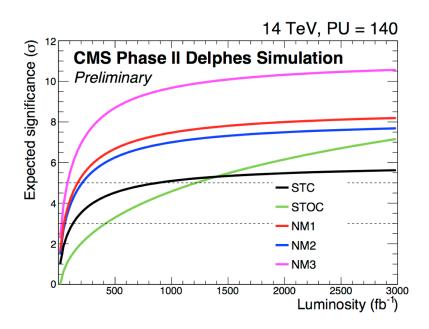
Discovery of "gluino-like" signature in jets + MET + b-tags (w/ 0-, 1-, and multi-leptons) in Run 2+3.



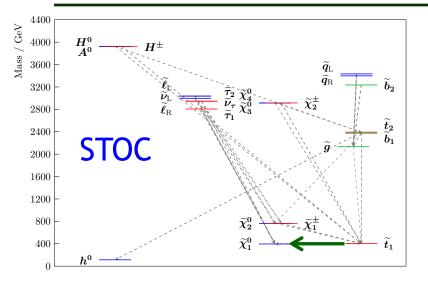

- Discovery of "gluino-like" signature in jets + MET + b-tags (w/ 0-, 1-, and multi-leptons) in Run 2+3.
- HL-LHC adds detailed measurements of:
 - Weakly interacting sector that gluinos cascade down to.
 - Discover which among several broad classes of SUSY models is implemented in nature.
 - Distinctive kinematic features indicate the structure of SUSY spectrum.
 - Observations in additional final states not visible yet in Run 3.




Large mass gaps in NM3 \rightarrow massive m_{T2} tails

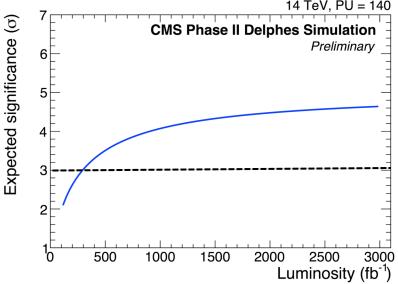

Distinctive kinematic features indicate the structure of SUSY spectrum

Discovery Scenarios: STC



For this stau-coannihilation model, 70% of the signal in the 1-lepton search comes from direct top squark production

Discovery Scenarios: STOC



cb pИ $\tilde{\chi}_1^0$ $ilde{\chi}_1^0$ 00000 pg \hat{c}

14 TeV. PU = 140

Compressed top squark (~3sigma) in Run 2+3

