Anomalous Diboson Resonances at HL-LHC **Ahmed Ismail** University of Pittsburgh HL/HE LHC Meeting, Fermilab April 5, 2018 based on 1712.01840, with A. Katz #### Resonance searches #### Scalar - e.g. extra Higgs going to 3rd generation quarks - motivated by 2HDM, SUSY, ... Fermion, e.g. excited quark from compositeness #### Vector - typical example is new boson of extra gauge group - e.g. use to explain experimental anomalies ## Light Z' searches as a high lumi opportunity High mass: Eventual HL-LHC reach of several TeV see earlier talks in this session LEP: couplings below ~0.01 for masses up to 200 GeV #### Theoretical considerations Chiral anomalies can break gauge invariance Symmetry preserved if divergences from all triangle diagrams cancel $$\mathcal{A}^{abc} = \operatorname{Tr} \left(T^a T^b + T^b T^a \right) T^c$$ Non-zero anomaly coefficient → at least one of the external gauge bosons does not correspond to a true symmetry of the theory ## Anomaly cancellation Almost any new non-trivial U(1)' requires additional SM-charged fermions to preserve gauge invariance exception: intergenerational, B - L ## Possibilities for a new gauge group Should be able to see new matter charged under SM: anomalons Standard defense: "they're too heavy" Very massive fermions do not decouple in triangle diagrams ## Effectively anomalous gauge theories Below anomalon scale, U(1)' current not conserved Integrating out heavy fermions adds Wess-Zumino terms to action which parametrize the symmetry breaking but restore SM gauge invariance $$\frac{g'g_w^2}{12\pi^2}\mathcal{A}^{Z'WW}\epsilon^{\mu\nu\rho\sigma}Z'_{\mu}\left(W_{\nu}^a\partial_{\rho}W_{\sigma}^a + \frac{1}{3}\epsilon^{abc}W_{\nu}^aW_{\rho}^bW_{\sigma}^c\right)$$ Don't need details of heavy fermions, as long as they're vector-like under SM (strongly constrained otherwise) ## Probing a light Z' through rare Z decays If kinematically accessible and anomaly exists, can look for Z' in rare Z decays at colliders $$Z \rightarrow Z' \gamma$$ LHC Z production cross section is ~60 nb $$\Gamma \sim \mathcal{A}^2 \frac{m_Z^3}{m_{Z'}^2}$$ EFT cutoff: $$M \lesssim \frac{64\pi^3 m_{Z'}}{g'g_{\rm SM}^2 \mathcal{A}}$$ ## Illustrative final state: Z' coupling to leptons (other signatures possible, like photon + MET) Look for $Z \rightarrow Z' \gamma$, $Z' \rightarrow$ leptons Lepton separation in Z decay is characteristic of Z' mass scale $$\Delta R(\ell,\ell) \sim 2m_{\ell\ell}/p_T \sim 4\frac{m_Z m_{Z'}}{m_Z^2 - m_{Z'}^2}$$ → Kinematics significantly different from radiative Z decay background #### Conventional search Two leptons and photon that reconstruct Z Cuts on lepton-lepton and lepton-photon separation Bump hunt in dilepton mass distribution, assuming 2 GeV resolution ## Prompt lepton-jet search For very light Z', overlapping leptons motivate lepton-jet search Look for two muons within $\Delta R < 0.5$ of each other Require nearly opposite photon such that total mass reconstructs Z 20 MeV bins in dilepton mass, look for resonance ## Other searches for a light Z' #### Low-energy ee colliders - Z'γ production in presence of coupling to electrons - 4μ for muon coupling $$Z \ \to \ 4 \mu$$ Altmannshofer, Gori, Pospelov, Yavin 1406.2332 #### Rare meson decays Dror, Lasenby, Pospelov 1705.06726 ## HL-LHC gains for light Z' ### Summary Large Z cross section at HL-LHC enables study of rare anomaly-mediated decays Limits complement other searches for new light gauge bosons, especially without 1st generation couplings Signature can largely be predicted from SM fermion charges, detailed structure of theory not too important At low mass, can set significant constraint with search for lepton-jets from collimated Z' decay products #### **Anomalies** Breaking of a classical symmetry by quantum effects Chiral anomaly: For massless fermions, left-handed and right-handed components are *independent* ## Chiral current classically conserved $$\psi \to e^{i\alpha\gamma^5} \psi$$ $$J^{5\mu} = \bar{\psi}\gamma^{\mu}\gamma^5 \psi$$ $$\partial_{\mu}J^{5\mu} = 0$$ ## Effectively anomalous gauge theories Under U(1)' transformation, action gets extra term $$\Delta \mathcal{L} \propto W^{\mu\nu} \tilde{W}_{\mu\nu}$$ Can remove by introducing shift degree of freedom $$\theta W^{\mu\nu} \tilde{W}_{\mu\nu}, \theta \to \theta + \epsilon$$ Leads to Stückelberg mass for Z', set by loop cutoff $$M \lesssim \frac{64\pi^3 m_{Z'}}{g'g_w^2 \mathcal{A}^{Z'WW}}$$ → correspondence between Z' and anomaly-canceling fermion masses (Preskill, 1991)