ATLAS+CMS top program at HL-LHC

Alexander Khanov Oklahoma State University HL/HE LHC Meeting, Fermilab, 4/6/18

Outline

- Perspectives of top physics at HL-LHC
- Top quark identification
- Review of recent studies of top physics at HL-LHC
 - Flavor changing neutral currents
 - J/ψ reconstruction in top decays
 - tt resonances
- More top physics at HL-LHC
- Summary

Top at HL-LHC

- With projected 3000/fb of integrated luminosity, the number of top quarks produced at HL-LHC is huge
- Plenty of topics for SM physics studies:
 - Precision measurement of top production (kinematic properties, differential cross sections) and properties (mass)
 - Verification of theoretical models
 - Top couplings
 - Associated top production: $tt(V/\gamma/H)$
 - Rare decays
- Physics beyond SM:
 - Resonances decaying into top quarks
 - Asymmetries, chromomagnetic moments 🗿
 - Top quarks arising in BSM processes (SUSY charged Higgs,..)

Events/3 ab
3B
600M
200M
30M
3M
300k
30k

HL-LHC challenge

- Challenging experimental environment
 - Need to find the ways to mitigate the pileup: <µ>=140 at L=5×10³⁴/cm²s, 200 at L=7.5×10³⁴/cm²s
 - Top quark reconstruction is particularly complex, relies on all detector components
- Challenge to physics studies
 - Object performance: can't afford full simulation for all analyses, use parameterized performance functions
 - Extrapolation of analyses with background derived on real data is tricky
 - Need to figure the way to evaluate the evolution of various systematic uncertainties
 - Zero approximation: assume systematic uncertainties as in Run 2
 - Many systematic uncertainties are expected to be reduced with statistics (e.g. background production cross sections), both due to lower stat. uncertainty and ability to go to tighter operating points
 - Difficult to evaluate without dedicated studies, VL scaling seems like a good estimate

Top quark identification

- Top quarks decay right after they are born, need to be reconstructed
- $Br(t \rightarrow Wb)^{100\%}$ unless we are looking for rare decays
- Two options: $t \rightarrow Wb \rightarrow Ivb$ or $t \rightarrow Wb \rightarrow jjb$
 - Leptonic top: (isolated) e/μ + b-jet + MET
 - Hadronic top, resolved: three jets, one of them b-jet
 - Hadronic top, boosted: a large R jet with substructure
- Identification of jets coming from b-quarks (b-tagging) is key for top reconstruction

b-tagging performance (1)

- Current b-tagging algorithms at both ATLAS and CMS are based on track impact parameters and reconstruction of secondary vertices
- Information related to IP and SV is combined into a single discriminating variable (tag weight) using multivariate analysis techniques
 - CMS: cMVAv2 (BDT, central region), DeepCSV (deep neural network, forward region)
 - ATLAS: MV2 (BDT), DL1 (deep learning not currently used for upgrade studies)
- Questions to address at HL-LHC:
 - algorithm sensitivity to high pileup environment up to $\langle \mu \rangle = 200$
 - performance in the very forward region: both experiments intend to extend the b-tagging $|\eta|$ coverage up to 3.5-4

B-tagging performance (2)

- b-tagging at high luminosity remains solid
 - b-tagging efficiency at fixed mistag rate is a function of pileup density, not <µ>
- Performance in the very forward region is a problem

– Existing algorithms are not optimized for large |η|, tracking is losing lever arm
4/6/2018 Alexander Khanov, OSU 7

Jet substructure

- Jet substructure: way to identify highly boosted tops (and W,Z,H)
 - mass drop: ratio of masses of highest subjet and the large-R jet
 - N-subjettiness τ_N : p_T weighted ΔR distance between each jet constituent and its nearest subjet axis under assumption that the jet has N subjets
- With the upgraded CMS tracker, highly granular jet substructure reconstruction is available at higher jet momenta than achieved with the Phase-1 tracker
 - improved large R jet mass resolution
 - gain in identification of boosted objects

CMS-TDR-014

Flavor changing neutral currents (1)

- Flavor changing neutral currents: golden analysis for top physics
 - SM: not allowed at the tree level, highly suppressed in loops
 - Enhanced in BSM: RPV SUSY, technicolor

BR	SM	2HDM	MSSM
t→cg	5×10 ⁻¹²	10 ⁻⁸ -10 ⁻⁴	10 ⁻⁷ -10 ⁻⁶
t→cZ	1×10 ⁻¹⁴	10 ⁻¹⁰ -10 ⁻⁶	10 ⁻⁷ -10 ⁻⁶
t→cγ	5×10 ⁻¹⁴	10 ⁻⁹ -10 ⁻⁷	10 ⁻⁹ -10 ⁻⁸
t→cH	3×10 ⁻¹⁵	10 ⁻⁵ -10 ⁻³	10 ⁻⁹ -10 ⁻⁵

Flavor changing neutral currents (2)

- $tt \rightarrow (lvb)(Zq) \rightarrow 3l + (\geq 1 b jet) + (\geq 1 jet)$
 - Strategy: kinematic reconstruction via χ^2
 - Dominant uncertainties: data driven fakes and tV/ttV backgrounds
- $tt \rightarrow (lvb)(Hq) \rightarrow l+(2,3 b-jets)$
 - Strategy: discriminant built from PDFs for each jet permutation
 - Dominant uncertainties: tt+HF normalization, flavor tagging

ATL-PHYS-PUB-2016-019

Flavor changing neutral currents (3)

ATLAS+CMS Preliminary

HERÀ LEP

Each limit assumes that all other processes are zero

 $BR(t \rightarrow Hu)$

LHC*top*WG

10

 10^{-2}

Zu)

BR(t→

November 2017

BR(t $\rightarrow \gamma u$)

Zu)

BR(t-

- Strategy: cut-and-count
- Dominant systematic uncertainties: instrumental (fake photons), tV+jets, VVγ

J/ψ reconstruction in top decays

- Look at t \rightarrow Wb \rightarrow ($\mu\nu$)(J/ ψ +X) \rightarrow 3 μ +X
- Alternative measurement of top mass that does not suffer from uncertainties due to b-jet reconstruction
- An opportunity to perform a dedicated tuning of the b fragmentation

Heavy tt resonances

- Many theories predict heavy (TeV scale) particles decaying into top pairs
- Produced tops are highly boosted, leading to dense tracking environment
- Benchmark: leptophobic Z' from topcolor-assisted technicolor
 - $Br(Z' \rightarrow tt)=1/3$, width << experimental resolution
 - ATLAS exclusion limit (3.2/fb, vs=13 TeV): 2.0 TeV
- Current analysis: Z'→tt→lvqq→(e/μ)+b+large-R-jet+MET (boosted) or Z'→tt→lvqq→(e/μ)+b+≥3j+MET (resolved)
- Obtained Z' mass reach: 4 TeV

More top physics at HL-LHC

- 4top production
 - new physics (resonances, top compositeness, 4t vertices,..)
 - sensitivity to Higgs width
 - σ_{SM} =6 fb at Vs=13 TeV, need HL-LHC to discover
- Wtb couplings
 - see previous talk
- V_{ts}/V_{td} measurements
 - can be improved measuring single top production vs rapidity (arXiv:1002.4718)
- ttZ, ttγ, ttg couplings
- Charge asymmetry in top-antitop production
 - may learn a lot from comparison of tt and ttW (arXiv:1406.3262)

Summary

 Top quark studies at HL-LHC open possibilities to improve our understanding of the SM and search for BSM physics in channels that depend on statistics

- rare decays, multidimensional differential cross sections, couplings,...

- Top quark reconstruction is complex, relies on all detector components and accurate Monte Carlo modeling
 - many current measurements are systematics driven
- Other physics analyses depend on good understanding of top production
 - top is background to most processes with heavy flavor in the final state: SM and BSM Higgs, SUSY,..
 - calibration of detector performance, particularly b-tagging algorithms
- The top studies for HL-LHC are at their beginning
 - more studies will show more potential