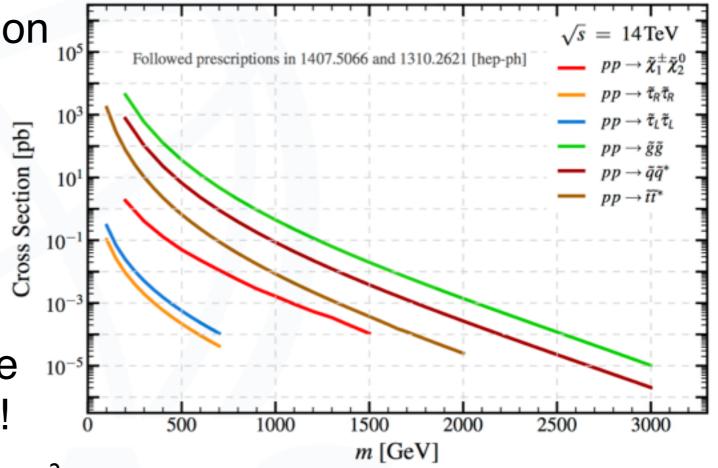


SEARCHES FOR ELECTROWEAK SUSY WITH ATLAS AT THE HL-LHC

FNAL HE/HL-LHC MEETING


APRIL 06TH, 2018

FOR THE ATLAS COLLABORATION

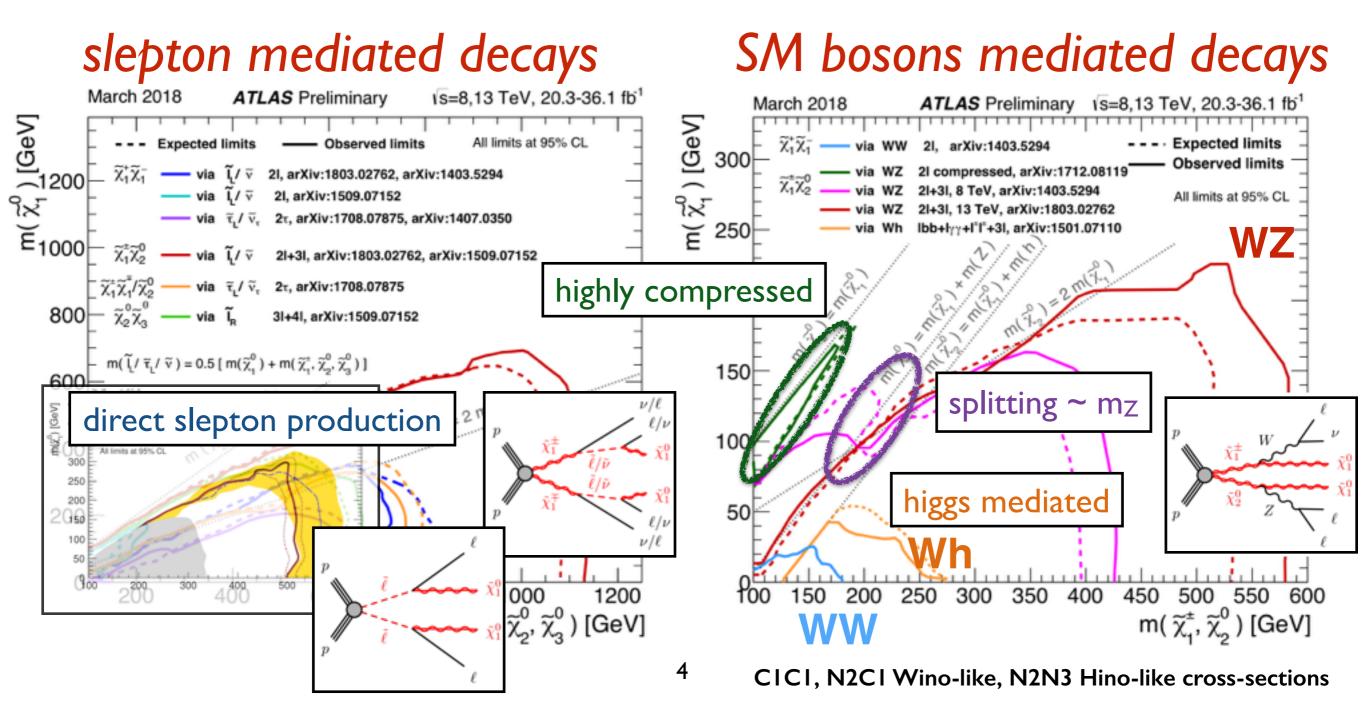
EWKINDS AT HIGH-LUMINDSITY

- The LHC Run-1 has excluded a large part of the natural SUSY parameter space
 - Limits for strong production are now well above a TeV
 - Top and bottom squarks also highly constrained
- * Lots of opportunities in the electroweak sector
 - Can dominate the production if squarks, gluinos heavy
 - Complex signatures with smaller cross-sections, degenerate spectra
 - LHC limits only starting to probe the interesting phase space -> HL-LHC crucial !

WHERE ARE WE NOW?

- Run2 searches have set stringent constraints in simplified models of electroweakinos production
 - Looking both at the production of *charginos* and *neutralinos* and of *sleptons*

slepton mediated decays

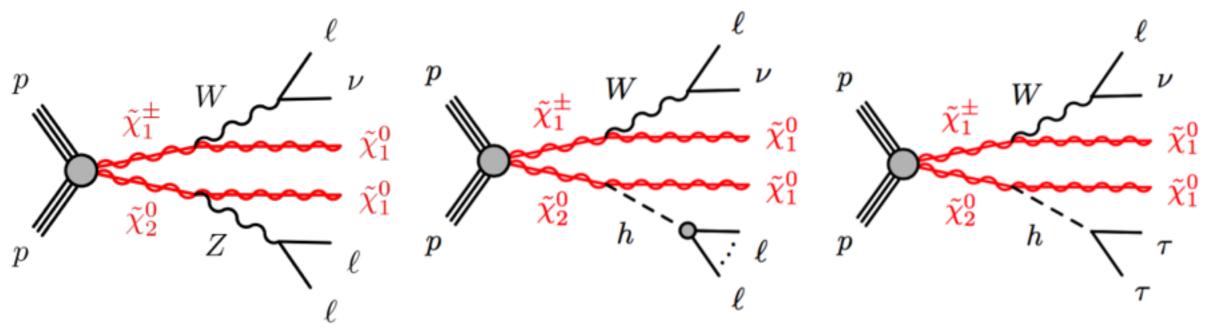

March 2018 1s=8,13 TeV, 20.3-36.1 fb1 ATLAS Preliminary March 2018 ATLAS Preliminary (s=8,13 TeV, 20.3-36.1 fb لم 1200 (^۲ 1200 س 1000 س ر کرا 250 س(کرا 250 _____ Expected limits $\chi_1\chi_1$ arXiv:1403.5294 Observed limits 2l compressed, arXiv:1712.0811 XXX 2l, arXiv:1803.02762, arXiv:1403.5294 2l, arXiv:1509.07152 All limits at 95% CL 2l+3l, 13 TeV, arXiv:1803.02762 2r, arXiv:1708.07875, arXiv:1407.0350 W7 $-\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{2}^{0}$ 2I+3I, arXiv:1803.02762, arXiv:1509.07152 - via τ̃, / ν̃, 2τ, arXiv:1708.07875 200 800 $- \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}$ — via \tilde{I}_{R} 3I+4I, arXiv:1509.07152 $m(\tilde{l}_{1} / \tilde{\tau}_{1} / \tilde{v}) = 0.5 [m(\tilde{\chi}_{1}^{0}) + m(\tilde{\chi}_{1}^{1}, \tilde{\chi}_{2}^{0}, \tilde{\chi}_{2}^{0})]$ 150 600 $m(\tilde{\chi}) = 2$ 100 400 50 200 800 200 400 600 1200 150 250 450 500 200 1000 350 400 550 600 300 m($\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0}, \tilde{\chi}_{3}^{0}$) [GeV] m($\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0}$) [GeV] CICI, N2CI Wino-like, N2N3 Hino-like cross-sections

SM bosons mediated decays

WHERE ARE WE NOW?

Good coverage in simplified models with specific assumptions on masses, spectra

But plenty of holes for highly motivated scenarios



ATLAS UPGRADE STUDIES

- In this talk I will give an overview of the sensitivity projections for electroweak SUSY production using an upgraded ATLAS detector at the HL-LHC
- The studies are mostly covering *benchmark scenarios*, or particularly *challenging models* for the LHC, and where we expect significant gains from the HL/HE-LHC
 - Consider 300 fb⁻¹ and 3000 fb⁻¹ collected at 14 TeV
 - The detector response is parametrised with *smearings* of the reconstructed objects based on GEANT4 simulation obtained for µ=200
 - Typically projections for different values of bkg. uncertainty
- In addition I will go through new studies which we expect to have ready for the Yellow Report this summer

3-LEPTON SEARCH

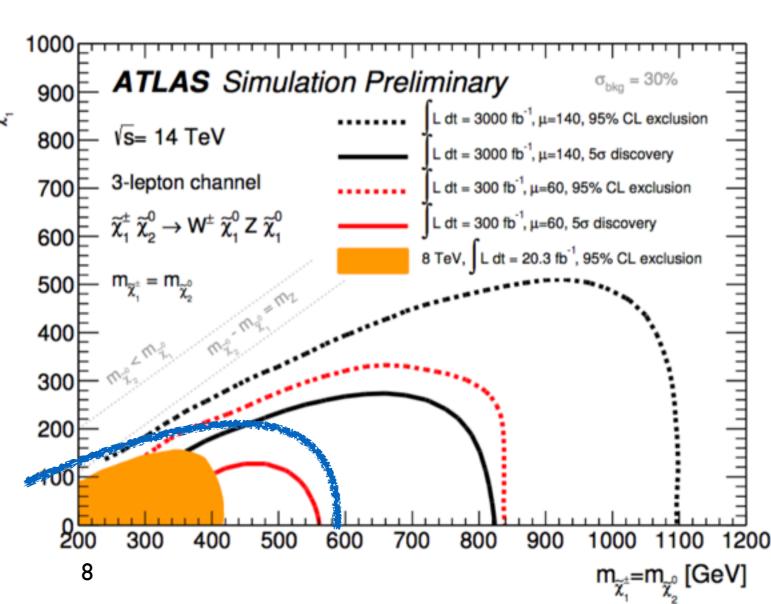
Targets WZ- and Wh-mediated decays of charginos and neutralinos with wino-like cross-sections

- ***** Two different selections studied for μ =140:
 - Three leptons for both WZ and Wh decays
 - One lepton plus two hadronic taus for the Wh model
- Background dominated by diboson, triboson and tt+V
 - Assuming a 30% uncertainty on the sum of backgrounds inspired by the current searches

3-LEPTON SEARCH (WZ)

For the WZ-mediated decays the following preselection is applied:

Events


- ► Exactly 3 leptons (p_T>50 GeV)
- One SFOS lepton pair
- One Z-boson candidate
- Veto on b-tag jets (p_T>20 GeV)

- Four signal regions are then defined with varying requirements on E^{miss} and m^T
 - \square m_T constructed with the lepton not forming the SFOS pair
 - They are statistically combined to improve sensitivity

EXPECTED SENSITIVITY (WZ)

- With 3 ab⁻¹ roughly doubling the discovery potential over the published 8 TeV searches
 - Exclusion surpassing 1 TeV for a massless LSP
- These projections will be updated for summer
 - Following the Run2 analysis strategy; already better than the 300 fb⁻¹ projections
 - Using updated object smearings

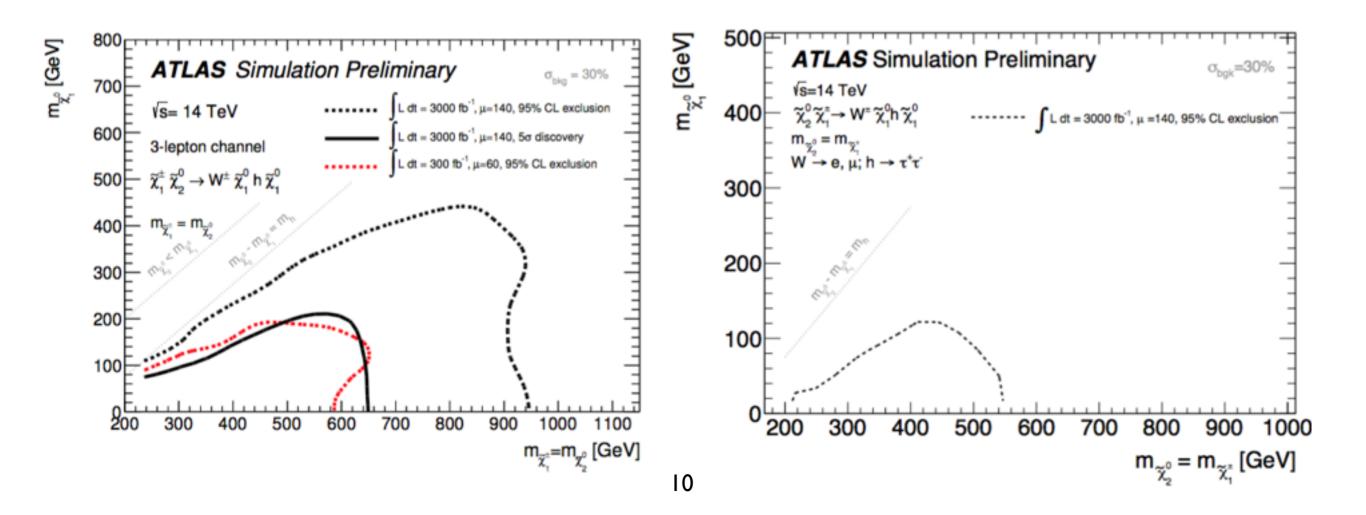
36.1 fb⁻¹ exclusion from ATLAS-CONF-2017-039

3-LEPTON SEARCH (WH)

Selection	SRE	SRF	SRG	SRH		
SFOS pair	veto					
# b-tagged jets	0					
$E_{\rm T}^{\rm miss}$ [GeV]	> 100					
$m_{OS}^{\min \Delta R}$ [GeV]	< 75					
$m_{\rm T}(\ell_1)$ [GeV]	> 200	> 200	> 300	> 400		
$m_{\rm T}(\ell_2)$ [GeV]	> 100	> 150	> 150	> 150		
$m_{\rm T}(\ell_3)$ [GeV]	> 100	> 100	> 100	> 100		
$\langle \mu \rangle = 60, 300 \text{fb}^{-1} \text{scenario}$	yes	yes	yes	_		
$\langle \mu \rangle = 140, 3000 \text{fb}^{-1} \text{scenario}$	yes	yes	yes	yes		

Four SRs are optimised separately for small and large mass splittings for the 3-lepton search

They are statistically combined to estimate the sensitivity

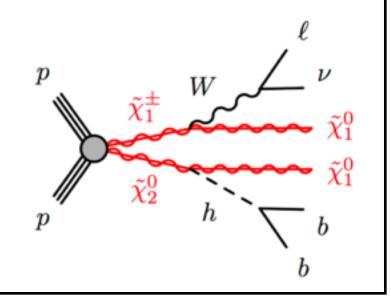

One SR requiring one lepton in association with two hadronic tau candidates (p_T>20 GeV)

· · · · · · · · · · · · · · · · · · ·		
Selection	$SR1\ell 2\tau$	
# e, µ	1	
# $ au$	2 (OS)	
# b-tagged jets	0	
$E_{\rm T}^{\rm miss}$ [GeV]	> 250	
$m_{\tau\tau}$ [GeV]	80-130	
$ p_T(\tau_1) + p_T(\tau_2) $ [GeV]	> 190	
$m_{\rm T}(\ell)$ [GeV]	> 130	

EXPECTED SENSITIVITY (WH)

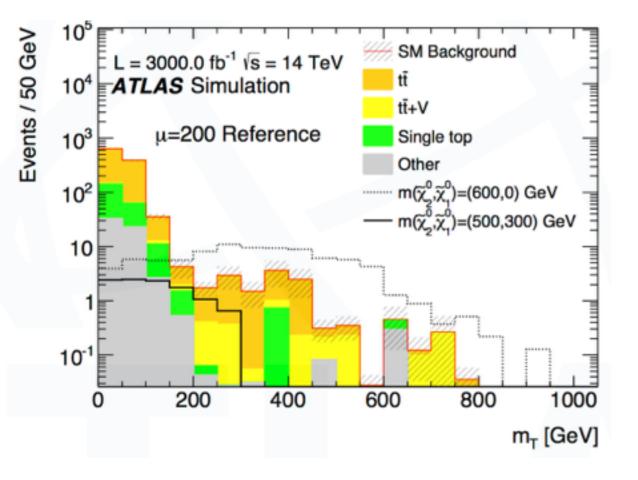
Discovery reach of 650 GeV in C1/N2 mass for 3 ab⁻¹

- Significant improvement over the 8 TeV exclusion of ~250 GeV for a massless LSP
- ***** For h->ττ exclusion going up to 550 GeV

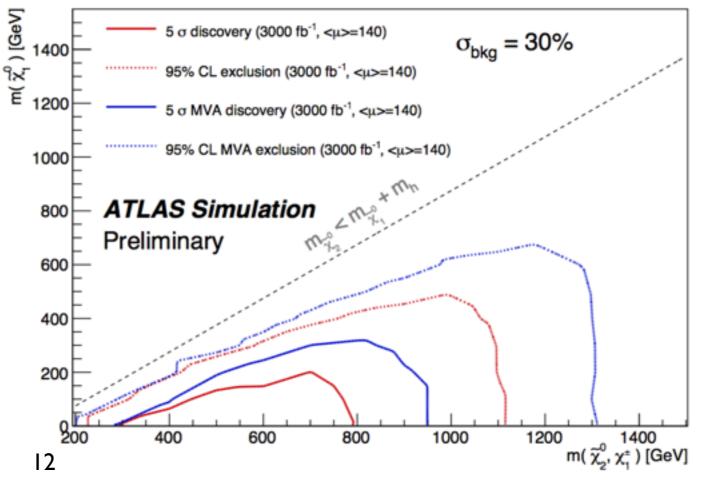


MH(→BB)

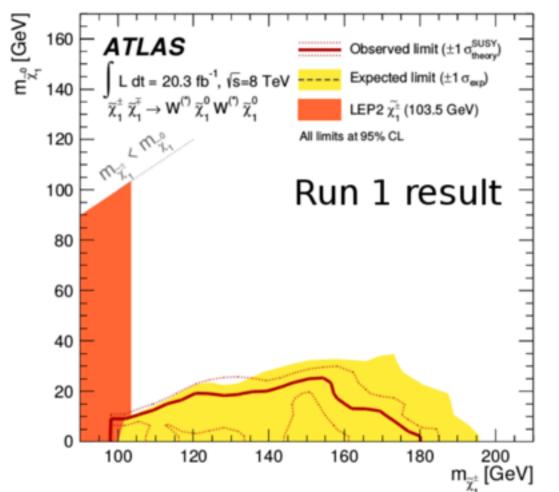
- Also looking at Wh-mediated decays with the higgs decaying into a bbbar pair
 - Requires one lepton and a pair of b-jets consistent with a Higgs mass hypothesis (5% signal efficiency)
 - Vetoes multi jet events to reduce tt, ttV

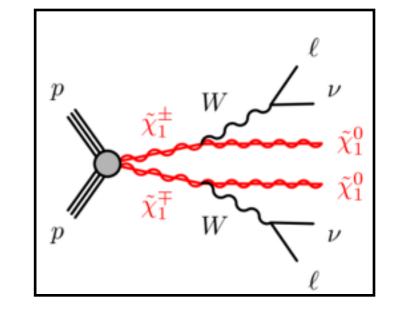


Selection	SRA	SRB	SRC	SRD	
# of leptons (e, μ)	1				
# b-tagged jets	2				
m_{bb} [GeV]	$105 < m_{bb} < 135$				
# jets	2 or 3				
$m_{\rm CT}$ [GeV]	> 200	> 200	> 300	> 300	
$m_{\rm T} [{\rm GeV}]$	> 200	> 250	> 200	> 250	
$E_{\rm T}^{\rm miss}$ [GeV]	> 300	> 350	> 400	> 450	
$\langle \mu \rangle = 60, 300 \text{fb}^{-1} \text{scenario}$	yes	yes	_	-	
$\langle \mu \rangle = 140, 3000 \text{fb}^{-1} \text{scenario}$	-	-	yes	yes	


- Four SRs defined maximising the discovery sensitivity
- In addition considered an MVA selection (BDT)

EXPECTED SENSITIVITY (WH)


Result will be updated for summer with the new detector parametrisation

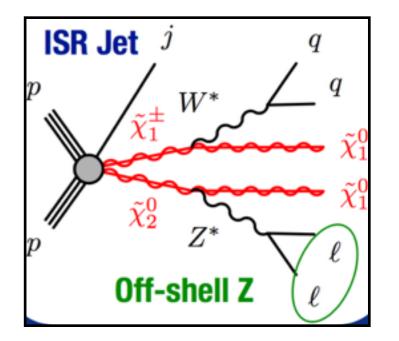

- Discovery sensitivity up to 800 GeV in N2/C1 mass
- Reaching almost 1 TeV of discovery sensitivity
- MVA selection improves the results by about 200 GeV

C1C1 TO WW

- Challenging process, with a signature very similar to the Standard Model WW production
 - Run1 results only scraping sensitivity
 - Extremely interesting channel for HL-LHC
- Plan for a new upgrade study result for the Yellow Report

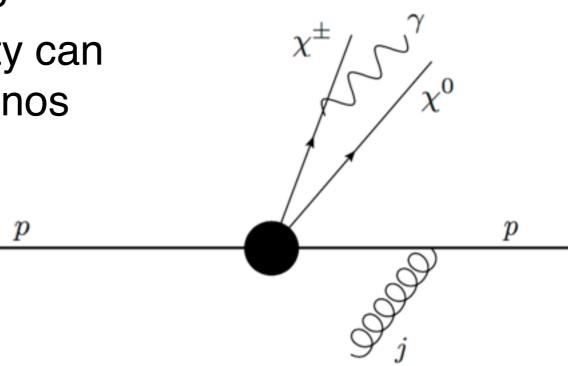
- Optimising the jet veto and the requirements on E_T^{miss} and M_{T2}
- Evaluating the sensitivity for different assumptions on the WW background uncertainty

13

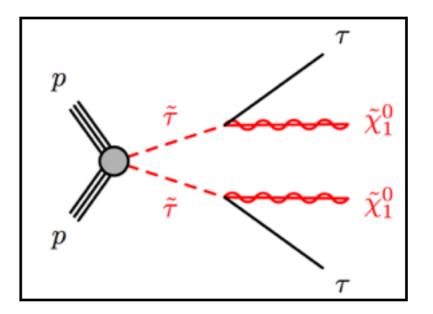

COMPRESSED EWKINOS

- In the limit of low-µ the two lightest neutralino and lightest chargino are *higgsino-like*, and nearly mass degenerate (from hundreds of MeV to few GeVs)
 - Very hard scenario for the LHC, small cross-sections and soft decay products of the ewkinos

$ISR + E_T^{MISS} + SOFT LEPTONS$


- For splittings greater than a GeV one can try to explicitly reconstruct the soft leptons
 - Recent Run2 result extending the LEP exclusion for the first time
 - Low-p_T lepton reconstruction crucial

- Upgrade study based on the Run2 13 TeV result
 - ▶ Require large E^{miss} recoiling against a high p^T ISR jet
 - ▶ Consider only muons and down to p_T of 3 GeV (4 GeV Run2)
 - Additional requirements on the maximum lepton p_T , $m_{\tau\tau}$, E_T^{miss}/H_T , ΔR_{II}
 - A fit to the m_{II} distribution is used to extract the signal
- Projections for 14 TeV and 27 TeV will be provided


$ISR + E_T^{MISS} + FSR PHOTON$

- For mass splittings between ~200 MeV and few GeVs the ewkinos decay products are too soft to be reconstructed
 - And too short decay length for disappearing track searches
- * A different strategy proposed in <u>1605.00658</u>
- Require an soft photon from FSR of the charginos, collinear with the E^{miss} direction
 - Reduce the dominant $Z \rightarrow vv$ bkg
 - For a 2% background uncertainty can get sensitivity to ~150 GeV ewkinos
- Ongoing validation of those projections within an ATLAS upgrade study (for summer)

DIRECT STAU PRODUCTION

- If charginos and NLSP neutralinos are heavy the direct production of stau pairs can become the dominant ewk. production in the pMSSM
- Run1 result excludes Stau_R only up to 109 GeV for a massless LSP
 - Barely improving over the exclusion from LEP

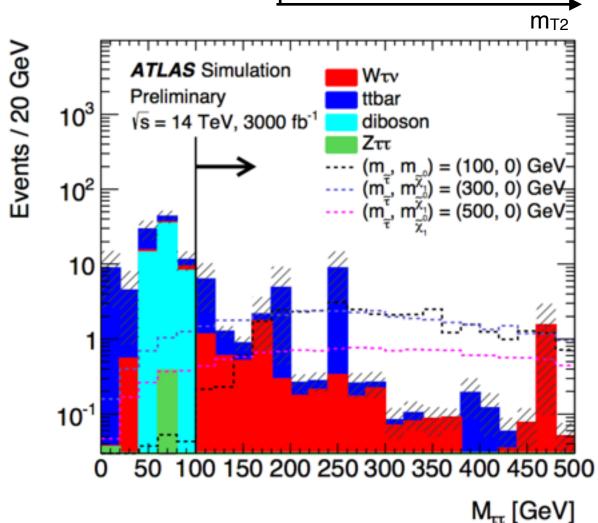
- Study considers production of stau_L or stau_R with a 100% BR into a tau-lepton and the LSP
 - Event selection largely based on the 8 TeV analysis
 - > Detector simulation using parameterised smearing for μ =200

EVENT SELECTION

Require two hadronic tau candidates with $p_T > 50$, 40 GeV

- Jet veto and Z-veto to reduce backgrounds

The transverse mass m_{T2} has a kinematic

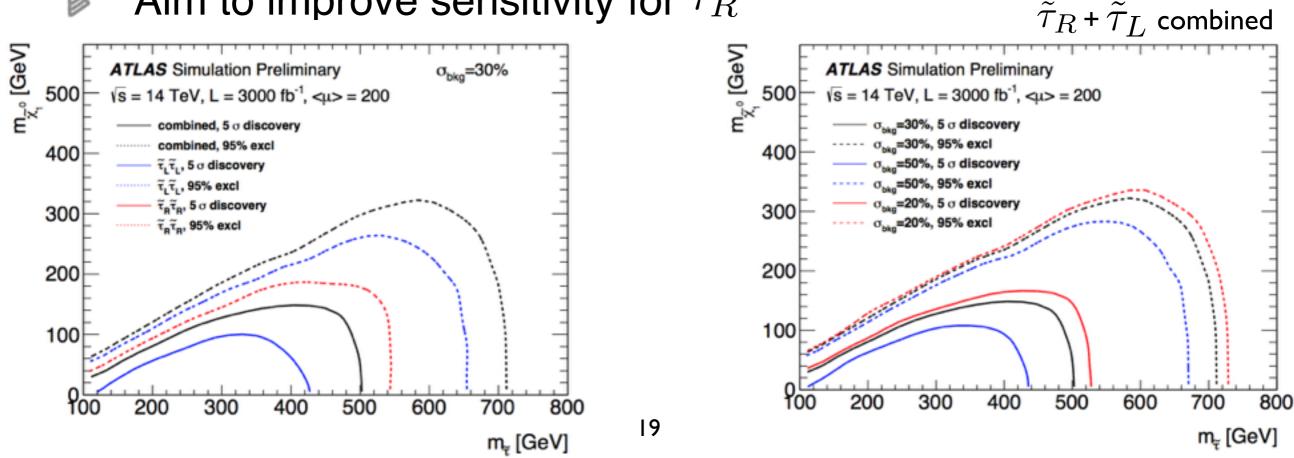

pair-produced particles each decay into a

endpoint for events where two massive

visible and an invisible particle

SR Definition		
\geq 2 OS taus		
loose jet-veto		
Z-veto		
$\Delta R(\tau 1,\tau 2) < 3.5$		
$E_{\rm T}^{\rm miss} > 280 { m ~GeV}$		
$m_{\rm T2} > 40 { m GeV}$		
$m_{{ m T} au 1} + m_{{ m T} au 2} > 480~{ m GeV}$		

- SM backgrounds dominated by W+jets and ttbar production
- A 30% bkg. uncertainty assumed, inspired by Run1 numbers



mSig

SENSITIVITY

- Discovery and exclusion sensitivities are computed for both $\tilde{\tau}_L$, $\tilde{\tau}_R$ and their combined production
 - Reaching a discovery sensitivity above 400 GeV for $ilde{ au}_L$ ⋑
 - No discovery sensitivity for pure $\tilde{\tau}_R$ production due to its small cross-section
- Result to be updated for summer
 - Expect differences due to new (better) tau smearing ⋑

SUMMARY

- Searches for electroweak SUSY partners will benefit the most of the energy and luminosity increase of the LHC
 - Important to asses the reach for benchmark models
- Several projections have been produced in the past years
 - chargino/neutralino pairs with decays to WZ
 - b chargino/neutralino pairs with decays to Wh (decays to $\tau\tau$, bb)
 - Direct production of stau pairs
- They will be updated with the most recent parametrisation of the upgraded detector and improved analysis strategy (with the Run2 experience)
- And new studies are being performed for the Yellow Report
 - Compressed electroweakino with soft leptons
 - Disappearing track (higgsino interpretation)
 - Chargino pair production with decays into WW