

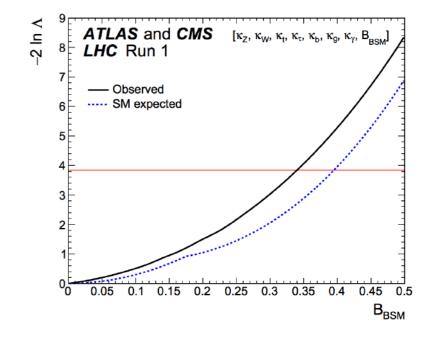
Searches for exotic, invisible and rare decays of the Higgs boson

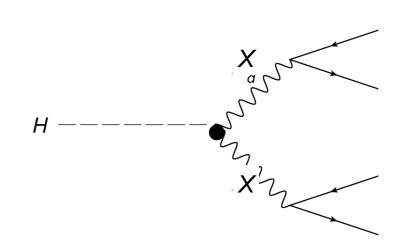
Sven Dildick Texas A&M University

On behalf of the CMS and ATLAS Collaborations

HL/HE-LHC 2018 FNAL Meeting, 4-6 Apr 2018, FNAL, Batavia, IL (United States)

Overview

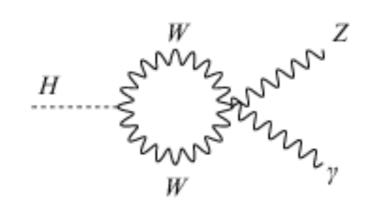

- Introduction
- SM Higgs to light boson decays
- Lepton Flavor Violation
- Invisible decays of SM Higgs
- Rare decays
- Plans for the Yellow Report
- Summary

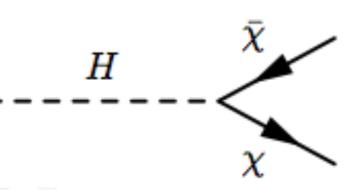

Introduction

- Scalar boson discovered in 2012 consistent with SM Higgs boson
- New physics searches and precision measurements at LHC, HL/HE-LHC to determine is true nature
- Focus on Higgs decays: 3 big & interesting fields

1) Exotic decays

- Higgs to BSM particles or forbidden SM decays
- Currently BBSM<34% at 95% CL (ATLAS+CMS)
 - Sets upper limit to all exotic branching ratios
- Popular set of models include Higgs decays to light bosons, $h \rightarrow 2x$, with $m_X < m_h/2$
 - NMSSM: CP-odd pseudo-scalar light boson
 - 2HDM + S: extra singlet scalar
 - Dark sector models with U(1)_D: extra dark vector boson
- Many different final states! $2b2\mu$, 4τ , 4b, $2\tau 2b$, $2\tau 2\mu$,...

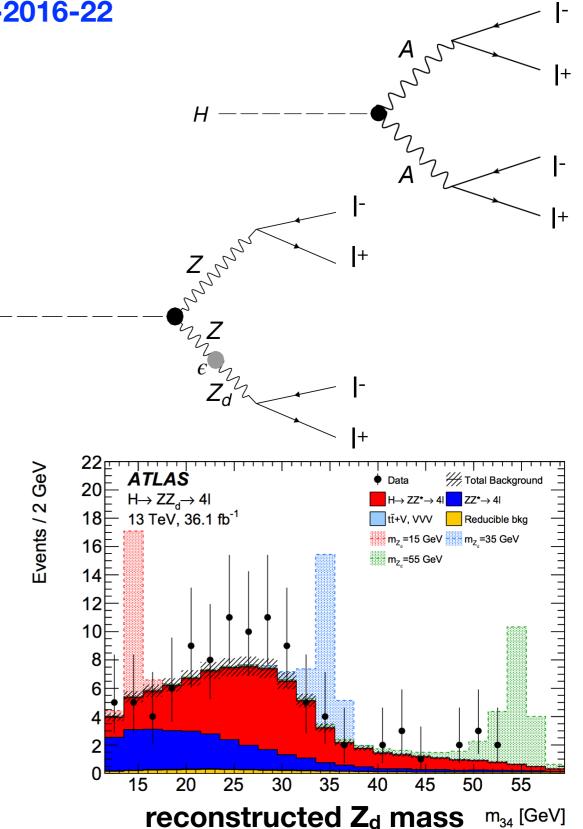

Introduction


2) Invisible decays

- Higgs decays to particles that leave a detector unseen
 - Higgs decay to unseen SM particles
 - Example: $H \rightarrow ZZ \rightarrow 4v$
 - Higgs decay to weakly interacting massive particles
 - Example: WIMP dark matter
- Currently B_{inv}<24% at 95% CL (CMS)
 - Note: exotic decays can become "invisible" when particle becomes long-lived
 - Decays to SM particles after it left the detector

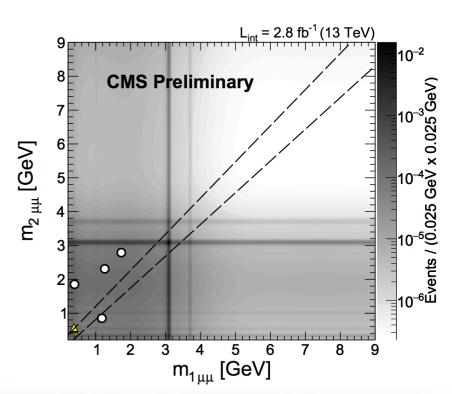
3) Rare SM decays

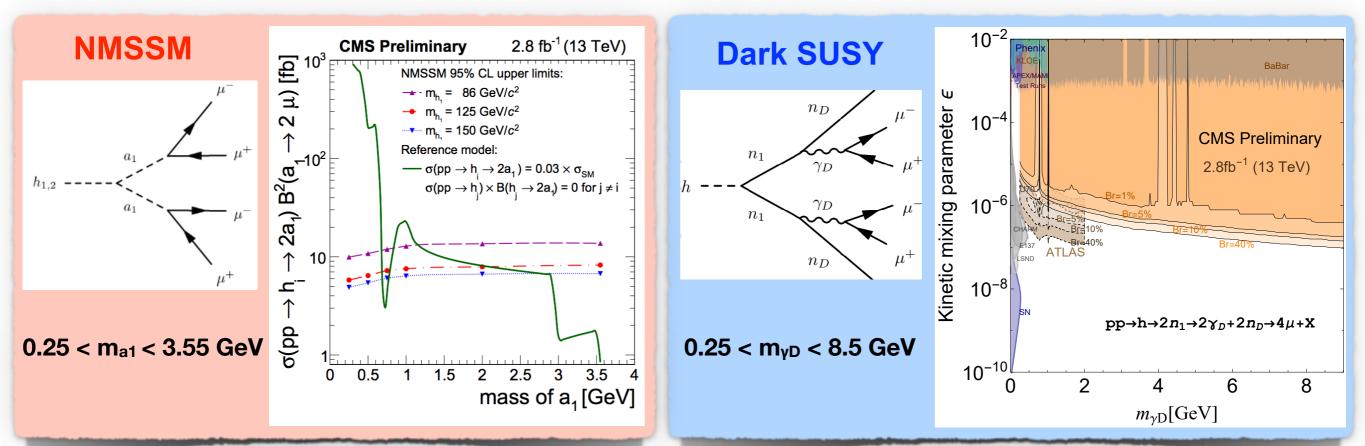
- H → Zγ
- Η → φγ
- Η →ργ



Higgs to boson: $h(125) \rightarrow aa/Z_{(d)}Z_d \rightarrow 4I$

Run-2 (2016) data: 36.1 fb⁻¹@ 13 TeV ATLAS-EXOT-2016-22

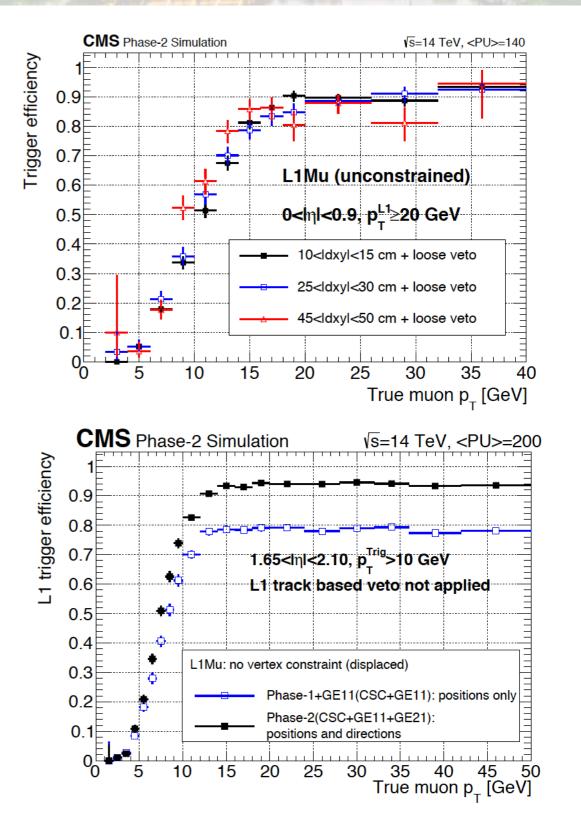

- Three different searches for new bosons a and Zd
 - pseudo-scalar "a" (2HDM+S)
 - vector boson "Zd" (U(1) dark sector)
- Channels: aa, ZZ_d and Z_dZ_d
- Final states: 4µ, 4e and 2e2µ
- Largest backgrounds:
 - pp \rightarrow ZZ^{*} \rightarrow 4l and pp \rightarrow h \rightarrow ZZ^{*} \rightarrow 4l
- Limits at 95% CL:
 - $B(h \rightarrow ZZ_d \rightarrow 4I) \approx 0.1\%$
 - Also valid for h → Za → 4l, with a necessarily pseudo-scalar if CP is conserved
 - $B(h \rightarrow Z_d Z_d \rightarrow 4I) \approx 0.01\%$
 - $B(h \rightarrow aa \rightarrow 4I) \approx 1\%$
 - Also valid in case light boson is scalar



Higgs to light boson: h(125) $\rightarrow 2a_1 \rightarrow 4\mu$, h(125) $\rightarrow 2n_1 \rightarrow 2\gamma_1 2n_D \rightarrow 4\mu 2n_D$

Run-2 (2015) data: 2.8 fb⁻¹ @ 13 TeV CMS-HIG-16-035

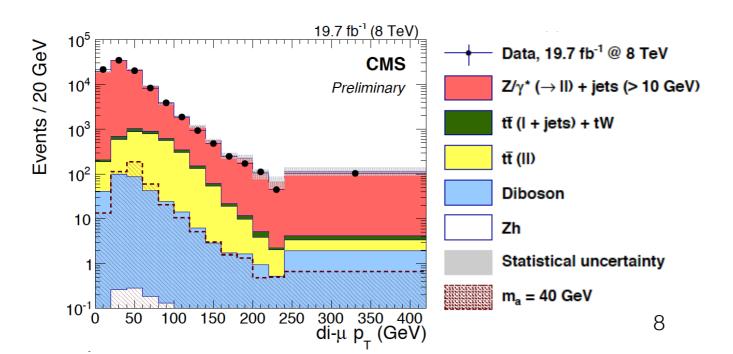
- · Light boson decays to pair of opposite-sign muons
 - Search for enhancement in 2D mass spectrum
- No significant excess of events over the SM background prediction
- Model independent limit on $\sigma(h \rightarrow 2a) \ge B(a \rightarrow 2\mu)^2 \ge GEN$ -acceptance
- Interpreted in context of two benchmark models:
 - NMSSM: a1 is pseudo-scalar
 - Dark SUSY: γ_D is vector boson
 - long-lived if it mixes with photon → displaced muons

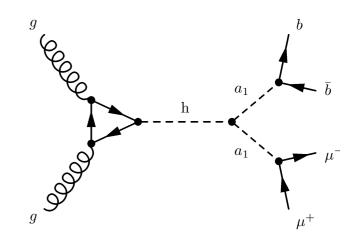


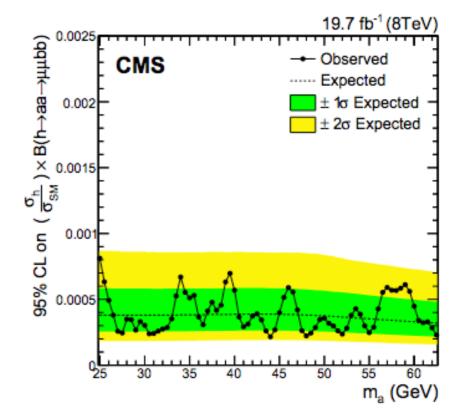
Higgs to light boson: h(125) $\rightarrow 2n_1 \rightarrow 2\gamma_1 2n_D \rightarrow 4\mu 2n_D$

- This analysis is one of the benchmark ones considered for the Phase-2 upgrade of the CMS Muon detector
- Displacement in this study limited by trigger and reconstruction capabilities by CMS
 - impact parameter d_{xy} < 10 cm
- Analysis can be significantly improved in Phase-2 with dedicated displaced muon trigger
- Requires
 - upgrade of Muon system (GEMs)
 - upgrade of Tracker system (Track-Trigger)
- Such displaced muon trigger would allow for displacements d_{xy} ~10 to ~100 cm (and beyond)

CMS-TDR-17-003

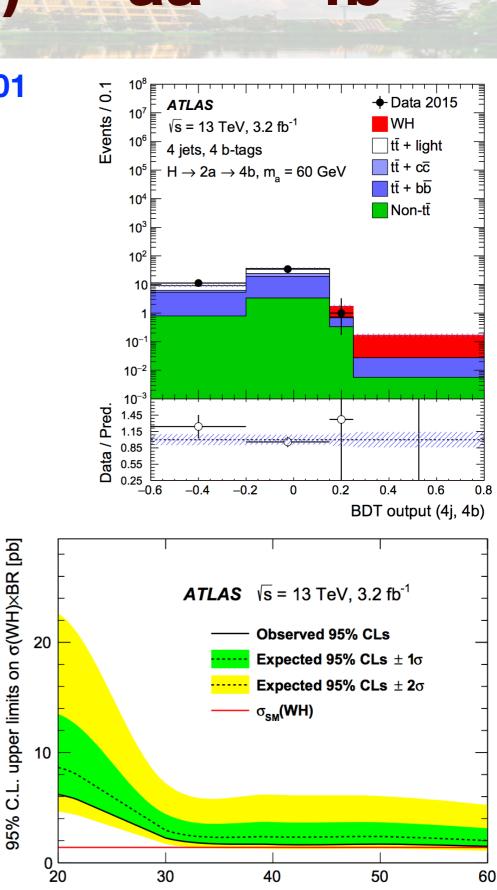

CMS-TDR-17-004




Higgs to light boson: $h(125) \rightarrow 2a \rightarrow 2\mu 2b$

Run-1 (2012) data: 19.7 fb⁻¹@ 8 TeV CMS-HIG-14-041

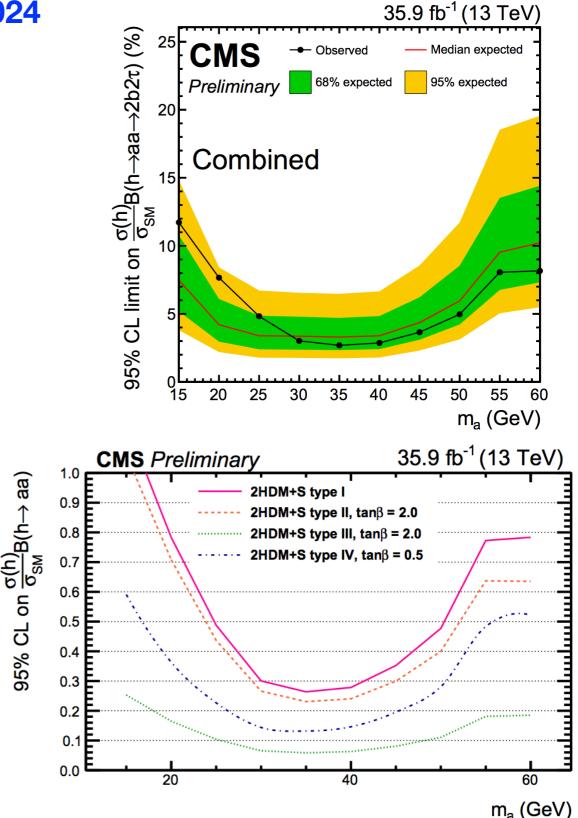
- Light boson with mass between $25 < m_a < 65$ GeV
- Selection:
 - 2 opposite sign muons and 2 b-jets
 - |m(µµbb) 125 GeV| < 25 GeV
- Good agreement between MC and data
- No significant excess of events over the SM background prediction
- Limits evaluated in context of 2HDM+S, assuming 100% ggh production, B(h \rightarrow 2a) = 10% and B(2a \rightarrow 2b2µ) = 0.17%
- $\sigma(pp \rightarrow h)/\sigma_{SM} \times B(h \rightarrow 2a \rightarrow 2b2\mu) \sim 0.04\%$



Higgs to boson: $h(125) \rightarrow aa \rightarrow 4b$

Run-2 (2015) data: 3.2 fb⁻¹ @ 13 TeV ATLAS-HIGG-2016-01

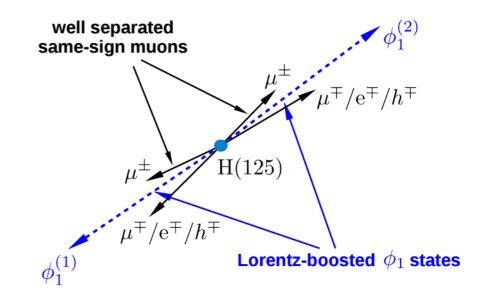
- Search for (pseudo-) scalar boson with mass between 20 and 60 GeV
- Focus on the Wh production channel, with $W \rightarrow Iv$
 - Extra lepton (l=e,µ) powerful handle to reduce the large QCD multi-jet background
- Signal region is split up in sectors depending on #jets and #b-tagged
- Dominant background: top quark pair production
- Kinematic variables feed into a BDT to discriminate signal from background
 - m_{bb}, m_{bbbb}, H_T, p_T(W),...
- Limits at 95% CL
 - $\sigma(pp \rightarrow Wh) \times B(h \rightarrow aa \rightarrow 4b) < 1.5 6.2 \text{ pb}$

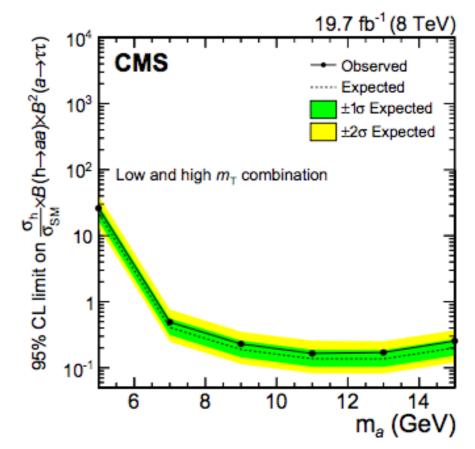


m_a [GeV]

Higgs to light boson: $h(125) \rightarrow 2a \rightarrow 2\tau 2b$

Run-2 (2016) data: 35.9 fb⁻¹ @ 13 TeV CMS-HIG-17-024

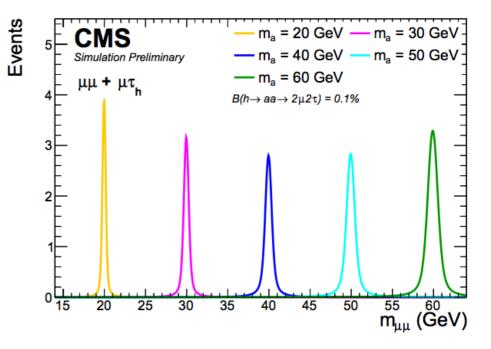

- Masses of the pseudo-scalar boson between 15 and 60 GeV in context of 2HDM+S
- Production modes: ggh, Vh, and VBF
- Three final states studied: $bb\tau_e\tau_h$, $bb\tau_\mu\tau_h$, $bb\tau_\mu\tau_e$
 - τ_h: tau decaying to hadrons
- Require at least one b-jet.
- Events must have good separation between lepton and τ_h
- Largest backgrounds:
 - ttbar + jets, $Z \rightarrow \tau \tau$
- Results are interpreted in the context of different 2HDM+S models

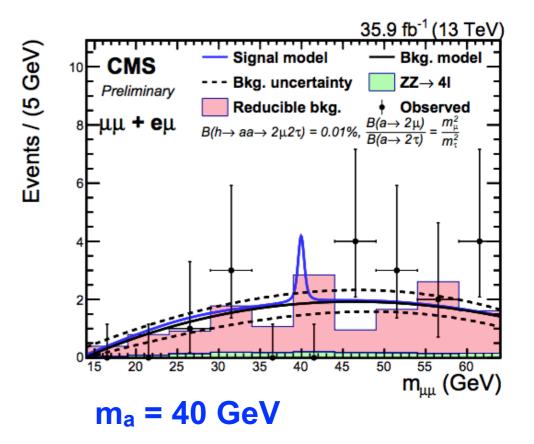


Higgs to light boson: $h(125) \rightarrow 2a \rightarrow 4\tau$

Run-1 (2012) data: 19.7 fb⁻¹ @ 8 TeV CMS-HIG-14-019 CMS-HIG-14-022

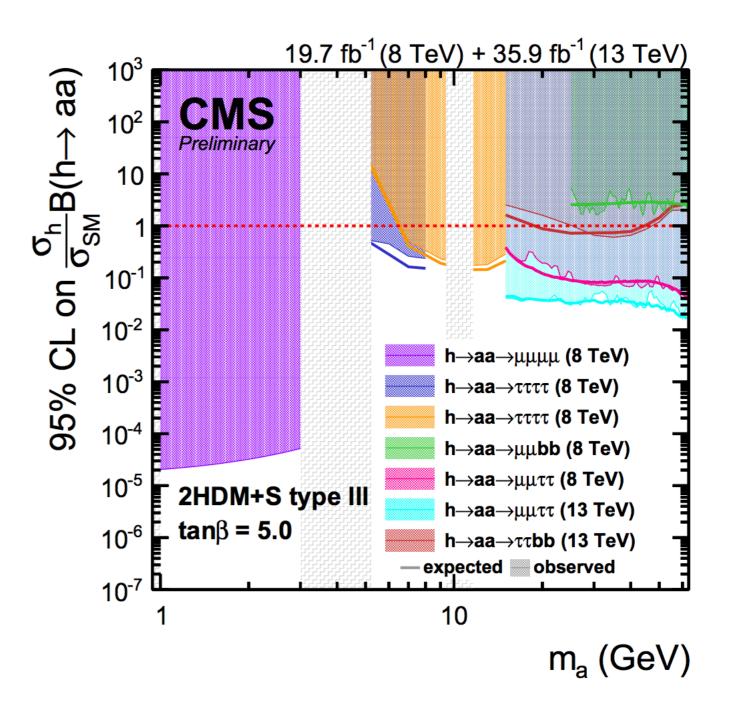
- Masses of the pseudo-scalar boson between 5 and 15 GeV in context of NMSSM
- Low mass light boson
 → dedicated algos to distinguish the overlapping τ
- To reduce QCD multi-jet background, require at least 2 muons in final state
 - other τ leptons decay to μ /e/hadrons
- 2 search regions based on m_T formed from high-p_T trigger muon and missing p_T
 - → ensure high sensitivity to signal in each region
 - low $m_T (\leq 50 \text{ GeV})$: mainly ggh
 - high m_T (> 50 GeV): equal parts ggh and Wh
- 95% CL limits on $\sigma(pp \rightarrow h)/\sigma_{SM} \times B(h \rightarrow 2a) \times B(a \rightarrow 2\tau)^2$ between 20 to 0.3 for m_a from 5 to 15 GeV




Higgs to light boson: $h(125) \rightarrow 2a \rightarrow 2\mu 2\tau$

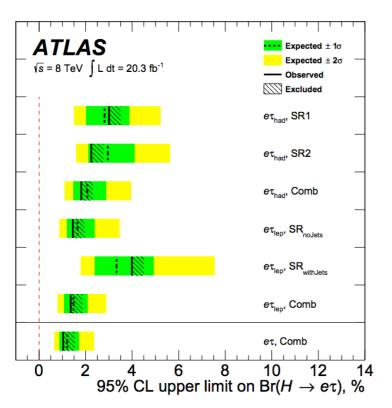
Run-2 (2016) data: 35.9 fb⁻¹ @ 13 TeV CMS-HIG-17-029

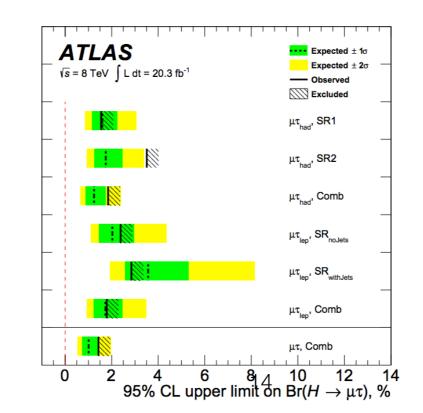
- a₁ in mass range 15 to 62.5 GeV
 → good separation between tau leptons
- Four final states studied: μμτ_eτ_μ, μμτ_eτ_h, μμτ_μτ_h, μμτ_hτ_h
- $\mu\mu\tau_e\tau_e$ and $\mu\mu\tau_\mu\tau_\mu$ not considered
 - smaller branching fractions
 - large contribution from pp $\rightarrow ZZ^* \rightarrow 4e/4\mu$
- Dominant backgrounds: ZZ, Z+jets, WZ+jets
- No significant excess over the SM prediction
- 95% CL limits on σ(pp→ h)/σ_{SM} x B(h → 2a → 2µ2τ) between 2.8e-4 and 1.2e-4 for m_a from 15 to 62.5 GeV
- Interpretation in context of NMSSM and 2HDM+S

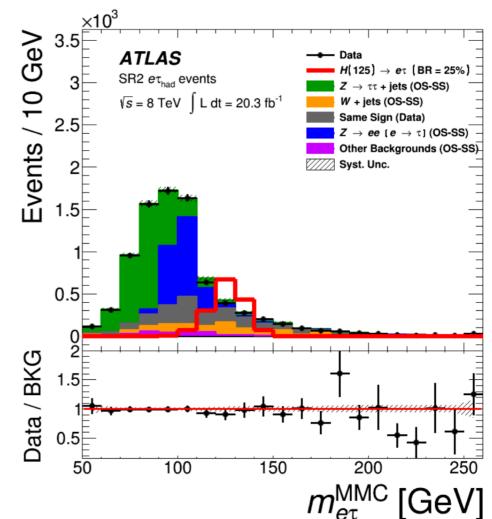

Signal dimuon invariant mass

Higgs to light boson: combination

Run-1 (2012) + Run-2 (2016): 19.7 fb⁻¹ @ 8 TeV + 35.9 fb⁻¹ @ 13 TeV CMS-HIG-17-029

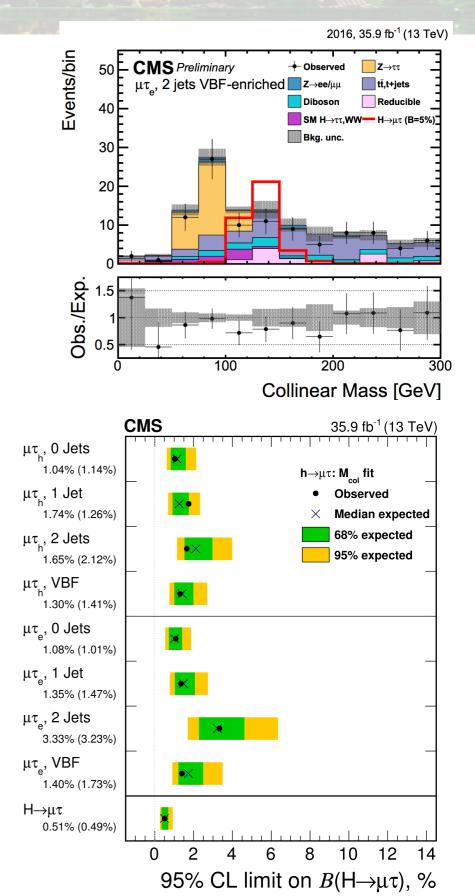

- Combined results from CMS searches: h(125) → 2a
- Extra results at 13 TeV expected soon:
 - $h(125) \rightarrow 2a \rightarrow 4\mu$
 - $h(125) \rightarrow 2a \rightarrow 4\tau$




Lepton flavor violation: $h(125) \rightarrow e\tau/\mu\tau$

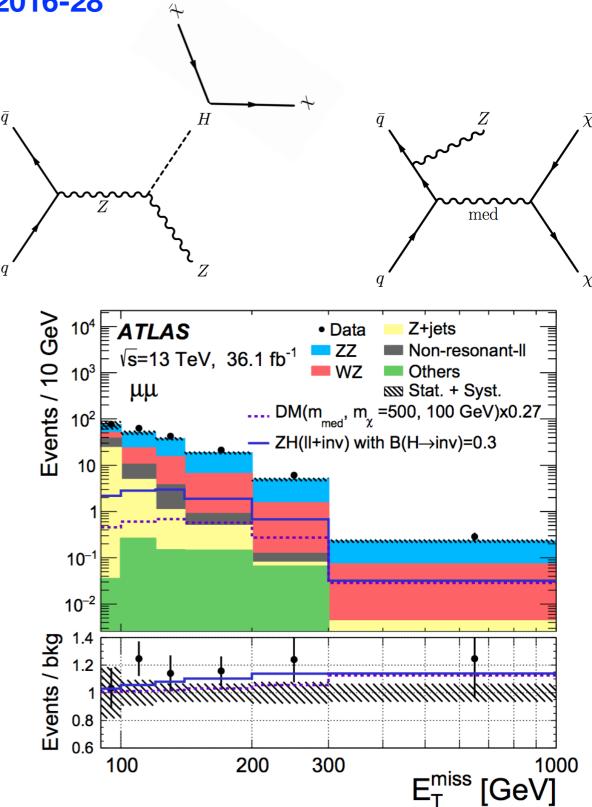
Run-1 (2012) data: 20.3 fb⁻¹ @ 8 TeV ATLAS-HIGG-2015-09

- Three searches: $h \rightarrow e\tau_h$, $h \rightarrow e\tau_{lep}$ and $h \rightarrow \mu\tau_{lep}$
- Use Missing Mass Calculator (MMC): more sophisticated version of the collinear approximation
- Largest background from Z boson production with misidentified lepton in the decay
- Results at 95% CL
 - B(h → eτ) < 1.04% (1.21% exp.)
 - $B(h \rightarrow \mu \tau) < 1.43\%$ (1.01% exp.)



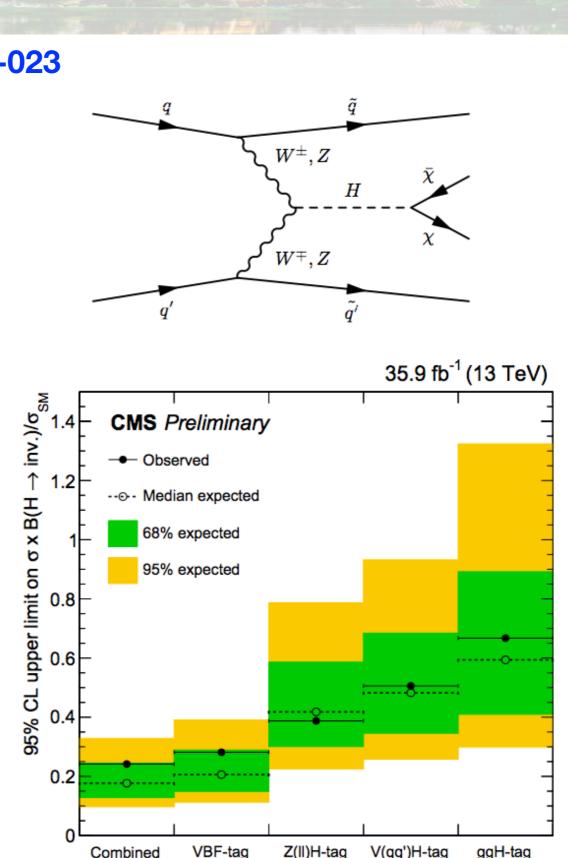
Lepton flavor violation: $h(125) \rightarrow e\tau/\mu\tau$

Run-2 (2016) data: 35.9 fb⁻¹ @ 13 TeV CMS-HIG-17-001


- Four decay channels: $e\tau_h$, $e\tau_\mu$, $\mu\tau_h$, $\mu\tau_e$
 - $e\tau_e and \mu \tau_\mu not considered$ (large Z $\rightarrow ee/\mu\mu$ background)
- Two complementary analyses:
 - 1. Template fit to collinear mass as estimated for m_h
 - 2. Boosted decision tree
- Most prominent backgrounds: $Z \rightarrow \tau \tau$, QCD and W+jets
 - For W+jets use the m_T as discriminator
 - Smaller backgrounds: ttbar, SM Higgs decays, VV
- Results at 95% CL:
 - $B(h \rightarrow e\tau) < 0.61\%$ (0.37% expected)
 - $B(h \rightarrow \mu \tau) < 0.25\%$ (0.25% expected)

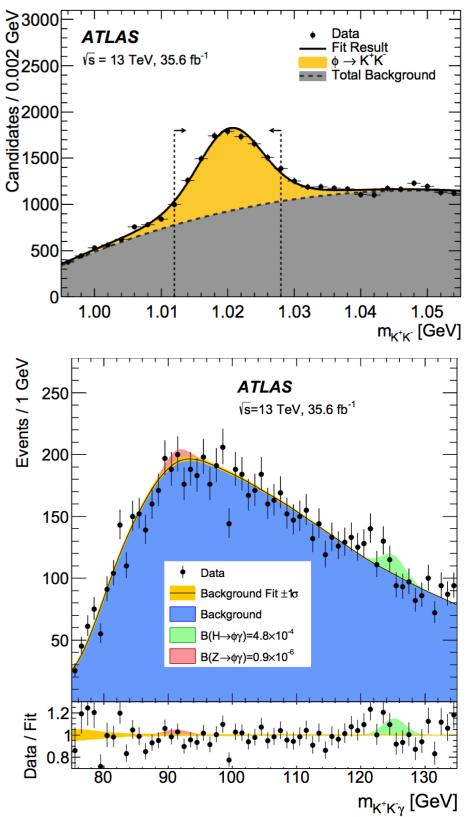
Invisible decays: ATLAS

Run-2 (2016) data: 36.1 fb⁻¹ @ 13 TeV ATLAS-HIGG-2016-28


- ATLAS search for h→ invisible decay or dark matter candidates with associated Z→II
- Dark matter model includes axial-vector mediator that decays to pair of WIMPs
 - Z is radiated off in ISR
- "Cut-and-count" analysis relies on accurate understanding of missing E_T
 - Requires good understanding of leptons and jets
- Result at 95% CL:
 - B(h→ invisible) < 67% (39% exp.)
- Sensitivity limited due to large systematic uncertainties
 - Theory predictions qqZZ and ggZZ
 - Data-driven estimation of the WZ and Z + jets

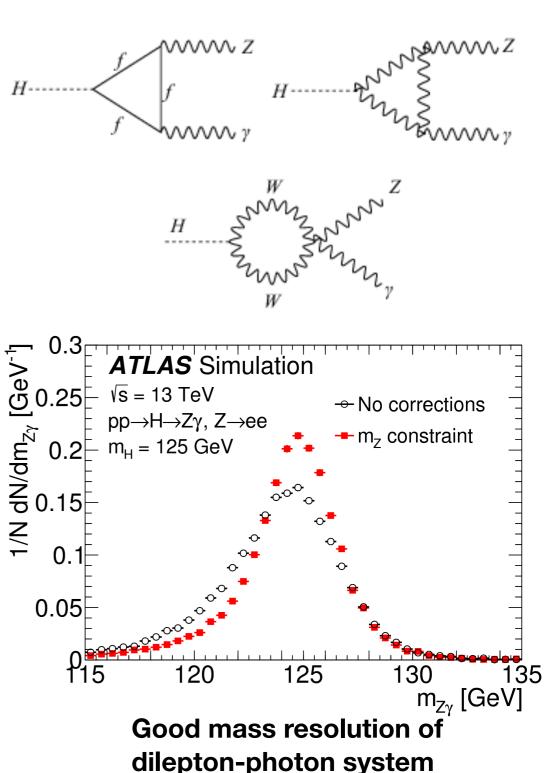
Invisible decays: CMS

Run-2 (2016) data: 35.9 fb⁻¹ @ 13 TeV CMS-HIG-17-023


- $h(125) \rightarrow \chi\chi$ (χ invisible) production through VBF
 - Two jets with large Δη_{ij} powerful discriminator agains QCD
- Two complementary analyses:
 - Cut-and-count: signal extraction with fit to events passing selection based on kinematic differences
 - Shape analysis: more relaxed selection, template to binned dijet mass
- Result (assuming SM production through VBF)
 - B(H→ invisible) < 0.28% at 95% CL (21% exp.)
- Combination also available from searches with qqH, ZH (with Z boson decaying to pair of lepton VH (with hadronically decaying boson) and ggH modes
 - B(H→ invisible) < 24% at 95% CL (24% exp.)

Rare decays: $h(125) \rightarrow \rho\gamma/\phi\gamma$

Run-2 (2016) data: 35.6 fb⁻¹ @ 13 TeV ATLAS-HIGG-2016-13


- ϕ and ρ meson decay to pairs of K+K⁻ and π + π -
 - Reconstruct φ and ρ meson mass
- Events are selected with dedicated triggers derived from the τ-lepton trigger
- Require an isolated photon with p_T > 35 GeV and two isolated tracks
- Background: inclusive photon + jet or multijet processes
 - Use K+K- γ and π + π - γ enriched sample
 - Data-driven background determination with templates
- Results at 95% CL
 - $B(h \rightarrow \varphi \gamma) < 4.8 \times 10^{-4} (4.2 \times 10^{-4} \text{ exp.})$
 - $B(h \rightarrow \rho \gamma) < 8.8 \times 10^{-4} (8.4 \times 10^{-4} \text{ exp.})$

Rare decays: $h(125) \rightarrow Z\gamma \rightarrow ee\gamma/\mu\mu\gamma$

Run-2 (2015+2016) data: 36.1 fb⁻¹ @ 13 TeV ATLAS-HIGG-2016-14

- $h(125) \rightarrow Z\gamma$ through ggh, VBF or Vh
- Event selection: Two isolated leptons and an isolated photon
- Analysis is limited by small branching fraction B(h → Zγ) x B(Z → II)
 - B(h \rightarrow Z γ) similar to B(h $\rightarrow \gamma\gamma$), but B(Z \rightarrow II) only 3.63%
- Can fully reconstruct the invariant mass of the Higgs boson
 - Apply final-state-radiation corrections + constrained kinematic fit to Z boson mass
- Result:
 - B(h → Zγ) < 1% at 95% CL

Plans for the Yellow Report

- Plans were outlined in HL-LHC Higgs Yellow Report Preparation meeting: <u>https://indico.cern.ch/event/714119/</u>
- Preliminary wishlists:

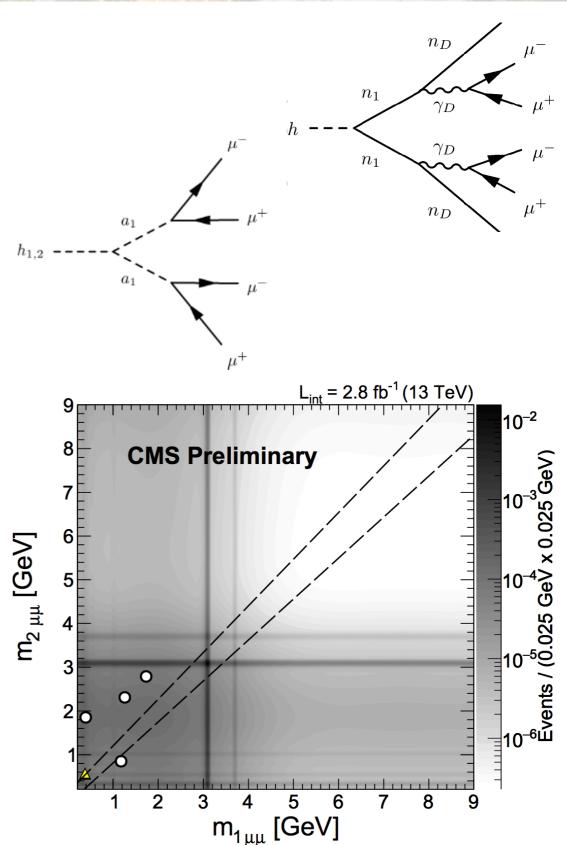
ATLAS plans for Yellow Report studies
h → invisible
h(125) → Zγ h(125) → $\rho\gamma/\phi\gamma$ (Extrapolation of Run-2 result should be done by summer)
No plane for studies on exetic deserve of the Lligge becap

No plans for studies on exotic decays of the Higgs boson

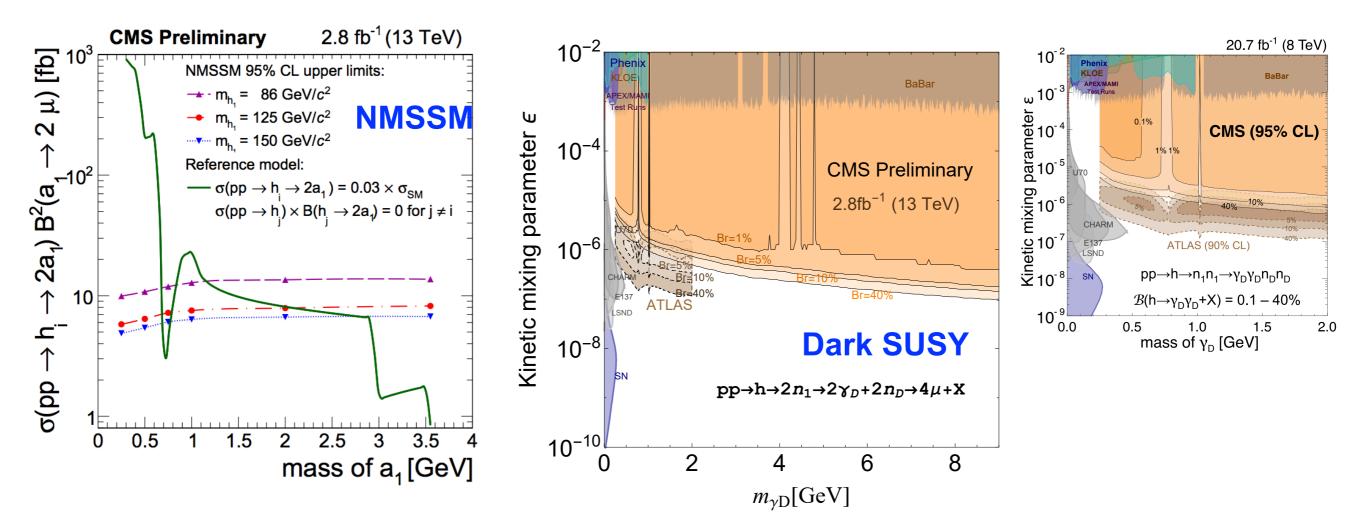
CMS plans for Yellow Report studies $h \rightarrow invisible$ $h(125) \rightarrow \phi\phi \rightarrow 4jets$ (ϕ long-lived boson, https://arxiv.org/pdf/1705.04321.pdf) $h(125) \rightarrow 2n_1 \rightarrow 2\gamma_D 2n_D \rightarrow 4\mu 2n_D$ (see muon TDR CMS-TDR-17-003) $h(125) \rightarrow Z_d Z_d \rightarrow 4l$ LFV Higgs decays

Summary

- Study of exotic, invisble and rare decays is a very exciting field to explore the properties of the SM(?) Higgs boson!
- Many channels and final states have been studied by ATLAS and CMS
- Yellow Paper wish lists for ATLAS and CMS are taking shape
- Looking forward to including the projections in the Yellow Paper

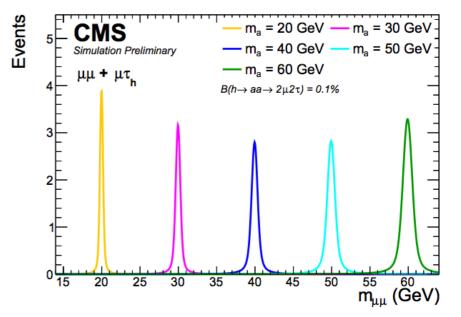


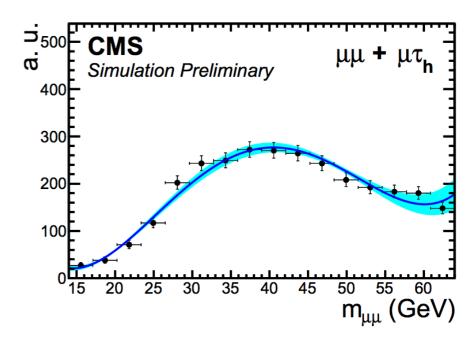
Higgs to light boson: h(125) $\rightarrow 2a_1 \rightarrow 4\mu$, h(125) $\rightarrow 2n_1 \rightarrow 2\gamma_1 2n_D \rightarrow 4\mu 2n_D$


Run-2 (2015) data: 2.8 fb⁻¹ @ 13 TeV CMS-HIG-16-035

- CMS search for light boson decays to pair of oppositesign muons
- Two different benchmark models:
 - NMSSM: a1 is a pseudo-scalar boson
 - Dark SUSY: γ_D is a vector boson that mixes kinetically with the SM photon
- Kinetic mixing between γ and γ_D can result in long-lived dark photons
 - Detector registers pairs of displaced muons in the muon system
- Light boson masses:
 - m(a1): 0.25 3.55 GeV
 - m(γ_D): 0.25 8.5 GeV
- Search for enhancement in selected events over background in 2D dimuon-dimuon mass spectrum
- No significant excess of events over the SM background prediction

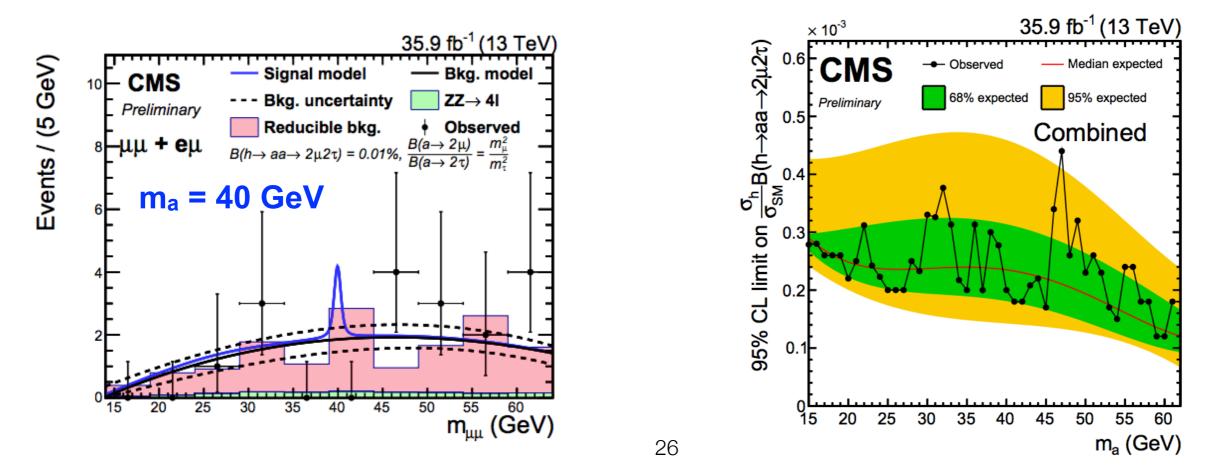
Higgs to light boson: h(125) $\rightarrow 2a_1 \rightarrow 4\mu$, h(125) $\rightarrow 2n_1 \rightarrow 2\gamma_1 2n_D \rightarrow 4\mu 2n_D$


- Model independent limit on $\sigma(pp \rightarrow h \rightarrow 2a + X) \times B(a \rightarrow 2\mu)^2 \times GEN$ -level acceptance
- Interpreted in context of NMSSM and dark SUSY
 - Limits on dark SUSY greatly improved (both in mass and coupling) compared to 8 TeV results


Higgs to light boson: $h(125) \rightarrow 2a \rightarrow 2\mu 2\tau$

Run-2 (2016) data: 35.9 fb⁻¹ @ 13 TeV CMS-HIG-17-029

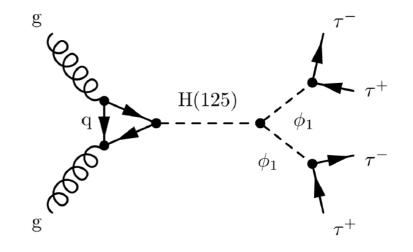
- CMS Search for a₁ with mass in range 15 < m_a < 62.5 GeV
 - Context of NMSSM and 2HDM+S
 - Lowest mass point (15 GeV) was chosen from requirement to have good signal selection efficiency
- a₁ relatively heavy → good separation between tau leptons
- Four final states studied:
 - μμτ_eτ_μ, μμτ_eτ_h, μμτ_μτ_h, μμτ_hτ_h (τ_h: tau decaying to hadrons)
 - $\mu\mu\tau_e\tau_e$ and $\mu\mu\tau_\mu\tau_\mu$ not considered
 - smaller branching fractions
 - large contribution from irreducible pp → ZZ^{*} → 4e and pp → ZZ^{*} → 4µ
- Selections:
 - 2 muons with p_T: 18-9 GeV
 - Well separated from electrons or hadronic jets
 - m(visible) ~< 120 GeV to suppress background
- Dominant background from ZZ and reducible processes (Z+jets, WZ+jets)

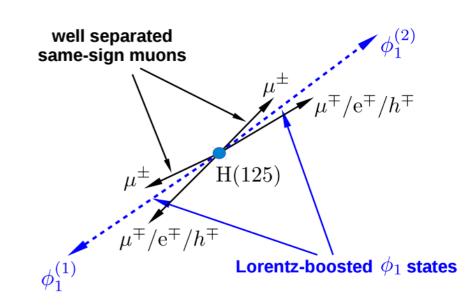

Signal dimuon invariant mass

Background dimuon invariant mass

Higgs to light boson: $h(125) \rightarrow 2a \rightarrow 2\mu 2\tau$

- No significant excess of events over the SM background prediction
- Results are interpreted as upper limits on the production of pp → relative to the SM Higgs boson production, scaled by B(h → 2a → 2µ2τ)
 - Run-1 results were interpreted in terms of B(h \rightarrow 2a) x B(a \rightarrow 2 τ)² (CMS-HIG-15-011)
- Limits between 2.8e-4 and 1.2e-4 at 95% CL for m_a from 15 to 60 GeV
- Interpretations are also provided in context of 2HDM+S models

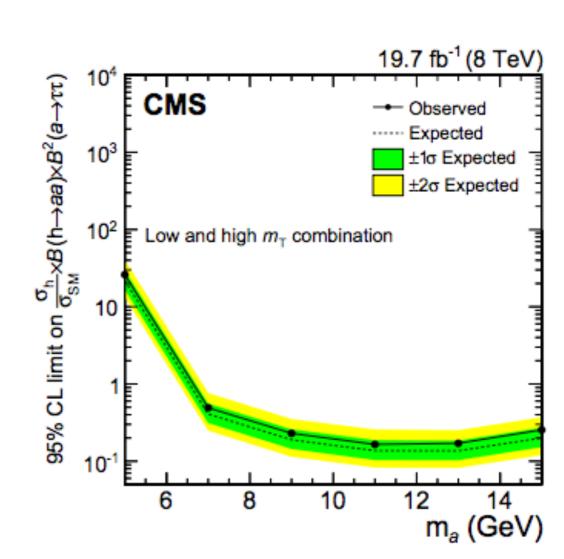



Higgs to light boson: $h(125) \rightarrow 2a \rightarrow 4\tau$

Run-1 (2012) data: 19.7 fb⁻¹ @ 8 TeV CMS-HIG-14-019 CMS-HIG-14-022

- CMS searches for a pseudo-scalar in mass range 5 to 15 GeV decaying to pairs of tau leptons
- Relatively light boson → boosted tau leptons → dedicated algorithms to distinguish the overlapping taus
- Tau decays into µ/e/hadrons
- To reduce QCD multi-jet background, require at least 2 muons in final state
- 2 search regions defined based on m_T formed from a high-p_T trigger muon and the missing p_T
 → ensure high sensitivity to signal in each region
 - low m_T (\leq 50 GeV): mainly ggh
 - high m_T (> 50 GeV): equal parts ggh and Wh

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\mu_{\rm trg}} E_{\rm T}^{\rm miss} [1 - \cos \Delta \phi(\mu_{\rm trg'}, \vec{p}_{\rm T}^{\rm miss})]},$$

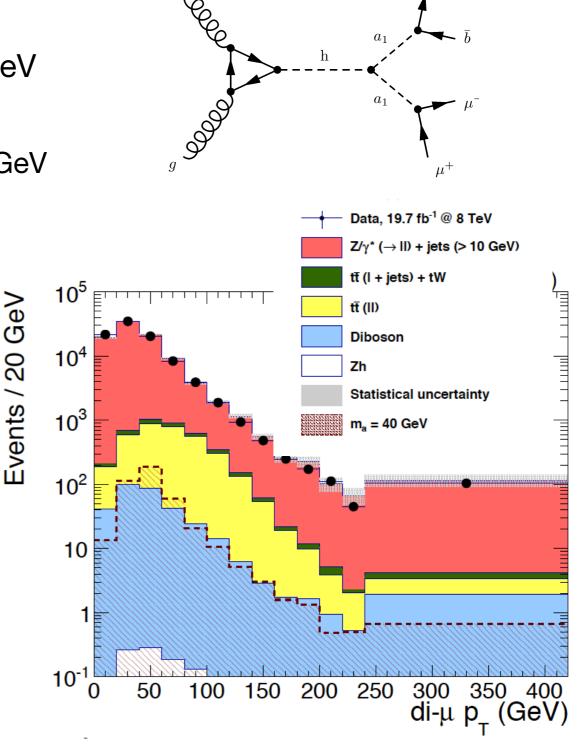


Higgs to light boson: $h(125) \rightarrow 2a \rightarrow 4\tau$

- Do a counting experiment on tau pair invariant mass $m(\tau\tau)$ in each search region
- SM production cross sections are taken for ggh, Vh, and VBF processes
- Expected yields in each search region shown below (assuming B(h \rightarrow 2a) x B(a \rightarrow 2 τ)² = 0.1)

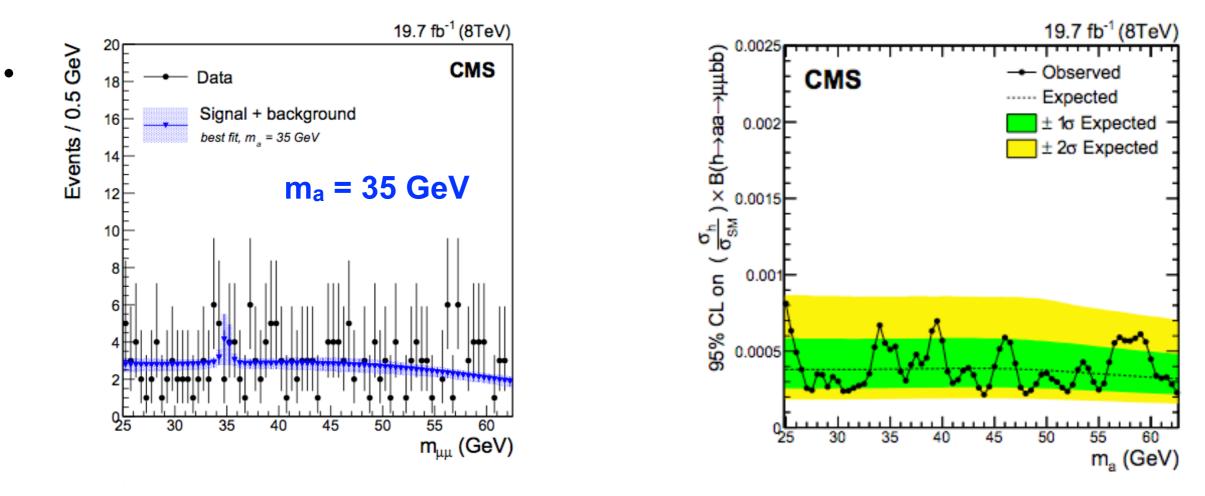
	$m_{\mathrm{T}} \leq 50 \mathrm{GeV}$	$m_{\rm T} > 50 {\rm GeV}$	
ggh	4.6 ± 0.3	0.8 ± 0.1	
Wh	0.27 ± 0.02	0.70 ± 0.03	
Zh	0.068 ± 0.005	0.19 ± 0.01	
VBF	0.51 ± 0.03	0.09 ± 0.01	
SM background	$5.4 \pm 1.0({ m stat})^{+4.2}_{-4.6}({ m syst})$	$6.1 \pm 1.6 (\text{stat})^{+3.7}_{-3.6} (\text{syst})$	
Observed	Observed 7		

- No significant excess of events over the SM background prediction
- Results are interpreted as upper limits on the production of pp→ h relative to the SM Higgs boson production, scaled by B(h → 2a) x B(a → 2τ)²
- Limits between 20 and 0.3 at 95% CL for m_a from 5 to 15 GeV



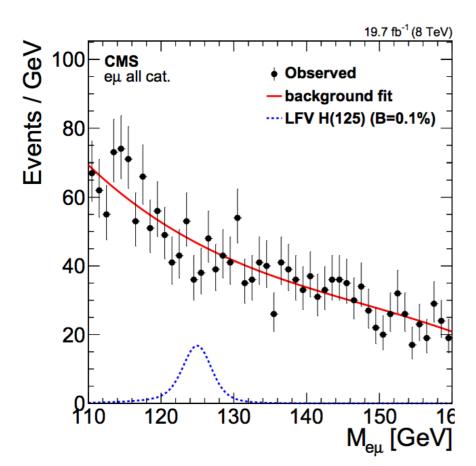
Higgs to light boson: $h(125) \rightarrow 2a \rightarrow 2\mu 2b$

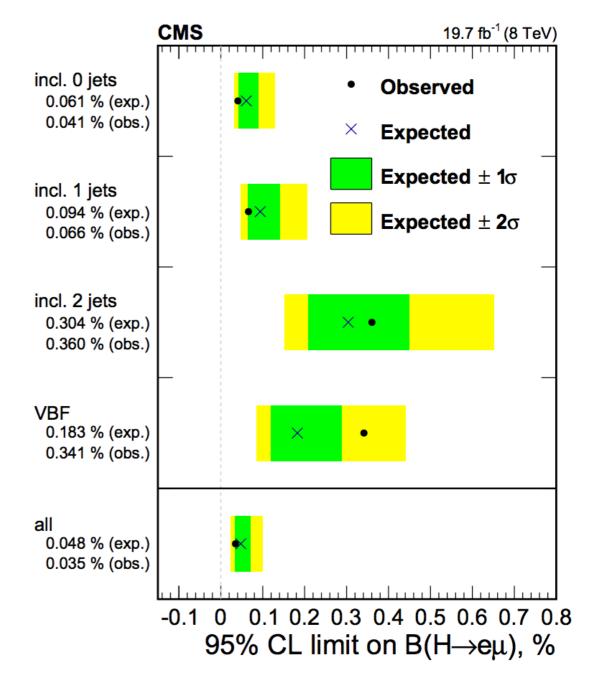
Run-1 (2012) data: 19.7 fb⁻¹@ 8 TeV CMS-HIG-14-041


- Search for a with mass in range $25 < m_a < 62.5$ GeV
- Selection:
 - 2 opposite sign muons with $p_{T,1} > 24$ and $p_{T,2} > 9$ GeV
 - 2 b-jets with $p_T > 15 \text{ GeV}$
 - |m(μμbb) 125 GeV| < 25 GeV
- Good agreement between MC and data
- Signal yield is calculated assuming 100% ggh production and B(h \rightarrow 2a) = 10% and B(2a \rightarrow 2b2µ) = 1.7e-3 (type-3 2HDM+S with tan β = 2)

	Z/γ^* +jets ($m_{\ell\ell} > 10 \text{GeV}$)		$t\bar{t}(\ell\ell)$	Other	
Backgrounds	210 :	± 35	22 ± 1	3 ± 1	
Total	235 ± 35				
Data	252				
	$m_{\rm a}=30{\rm GeV}$	$m_{\rm a}=40{ m GeV}$	$m_{\rm a}=50{ m GeV}$	$m_{\rm a}=60{ m GeV}$	
Signal	1.18	0.97	1.11	1.49	

Higgs to light boson: $h(125) \rightarrow 2a \rightarrow 2\mu 2b$


- No significant excess of events over the SM background prediction
- Smooth shape + gaussian to model dimuon mass distribution was used for signal search and limit setting
- Observed and expected limits on h boson production normalized to the SM prediction times B(h \rightarrow 2a \rightarrow 2b2µ) ~ 0.04%



Lepton flavor violation: $h(125) \rightarrow e\mu$

Run-1 (2012) data: 19.7 fb⁻¹ @ 8 TeV CMS-HIG-14-040

- Most prominent background
 - Drell-Yan
 - Tau lepton pairs
 - Electroweak diboson production
- No excess over SM prediction
- Results at 95% CL:
 - B(h → eµ) < 0.048% (0.035% expected)

