Measurements of VBS (and other diboson processes)

Bing Li on behalf of ATLAS & CMS Collaborations

University of Michigan

HE/HL-LHC Workshop 4-6 April 2018, Fermilab

The VBS Processes at LHC

- Vector Boson Scattering (VBS) is a key process to probe the mechanism of electroweak symmetry breaking (EWSB)
- Involving Quartic Gauge Couplings (QGCs) which is sensitive to new physics
 - * Only charged QGCs allowed at Standard Model (SM) tree-level (WWWW, WWZZ, WWZγ, WWγγ)
 - * Constraint on anomalous QGCs (aQGCs)
 - * Probe new physics through deviations from SM

The VBS Unitarity Violation Issue

SM VV scattering processes with low mass Higgs (120 GeV)

SM VV scattering processes w/o a Higgs boson

- * Close connection with Higgs physics
- The VBS cross sections will go diverge without Higgs or other similar underlying new unitarization mechanisms

Experimental Signatures of VBS

- Two intermediate vector bosons radiated from two incoming quarks
- * Final state with two vector bosons plus two outgoing jets
- * In general, two "tag" jets in forward region with large rapidity separation and large invariant mass

mmmmmm

mmmmm

- * Suffer from pile-up (PU) jets, especially in the forward region when go to HL/HE
- EW VBS has relatively smaller cross-sections, suffer from irreducible QCD VV + 2jets events
- A HL-LHC project with extended detector η coverage will be crucial and ideal general VBS measurements, as of signal sensitivity and background rejection, etc.

Candidate VBS event from ssWW Phys. Rev. Lett. **113**, 141803

Where Are the MultiBoson Processes

- We have been able to have many precision measurements of VV final states with current luminosity
- ✓ With additional two jets, cross sections go below 10⁻² pb level

Current VBS Measurements at the LHC

ATLAS measurements

CMS measurements

Statistic limited in the VV + 2jets measurements

Looking Forward for More Luminosity

- Differential cross section measurements instead of an overall significance
- Longitudinal VV scattering part
- * Try to include semi-leptonic channels as well
- Much improved limit on aQGCs
- * ...

Expected VBS Measurements with 3000 fb⁻¹ @14 TeV

Studies with HL-LHC on VBF/VBS processes This talk will focus on VBS part

VBF Higgs	SM diboson VBS
VBF H(125) to WW	ssWW
VBF H(125) to ZZ to 4I	VBS ZZ to 4I
VBF H(125) to YY	VBS WZ to IvII
VBF H(125) to TT	

More luminosity and higher energy gives the possibility to

- Precision measurements of electroweak scattering processes
- Probe to new physics through anomalous vector boson couplings or any deviations from SM prediction
- One disadvantage we have to suffer is the higher pileup, especially pileup jets in forward region

The (a)QGCs in VV Final States

Effective operators approach

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_{d>4} \sum_{i} \frac{f_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

- Three types of dimension-8 operators
 - * Scalar: S0, S1, S2
 - * Tensor: T0 T9
 - * Mixed: M0 M7

SM allowed ones

Michael Rauch, arxiv:1610.08420 O. J. P. Eboli, M. C. Gonzalez-Garcia, arXiv:1604.03555

	$\mathcal{O}_{S,0}, \ \mathcal{O}_{S,1}, \ \mathcal{O}_{S,2}$	$\mathcal{O}_{M,0}, \ \mathcal{O}_{M,1}, \ \mathcal{O}_{M,7}$	$egin{aligned} \mathcal{O}_{M,2}, \ \mathcal{O}_{M,3}, \ \mathcal{O}_{M,4}, \end{aligned}$	$\mathcal{O}_{T,0}, \ \mathcal{O}_{T,1}, \ \mathcal{O}_{T,2}$	$\mathcal{O}_{T,5},$ $\mathcal{O}_{T,6},$ $\mathcal{O}_{T,7}$	$\mathcal{O}_{T,8},$ $\mathcal{O}_{T,9}$
WWWW	x	X	$\mathcal{O}_{M,5}$	x	,	
WWZZ	X	X	Х	X	Х	
ZZZZ	Х	Х	Х	Х	Х	Х
$WWZ\gamma$		Х	Х	Х	Х	
$WW\gamma\gamma$		Х	Х	Х	Х	
$ZZZ\gamma$		Х	Х	Х	Х	Х
$ZZ\gamma\gamma$		Х	Х	Х	Х	Х
$Z\gamma\gamma\gamma$				Х	Х	Х
$\gamma\gamma\gamma\gamma\gamma$				Х	Х	Х

April 5, 2018

General Signatures from aQGCs

- Enhanced cross sections in the high energy/mass tail region
- Usually powerful observables
 - * Mass, pT, mT, etc. depending on final states
 - ∗ In most cases we are looking at the highest few bins → Higher luminosity and higher energy will help a lot
 - Will benefit from a more accurate high-order calculation as well in the tail region

Current Same-sign WW Scattering @13 TeV

- Profile likelihood ratio test statistic based on 2D (m_{jj}, m_{ll}) distributions
- $\checkmark\,$ Observed (expected) significance of 5.5 (5.7) σ

One of the VBS channels with best S/B

Data	201
Signal + total background	205 ± 13
Signal	66.9 ± 2.4
Total background	138 ± 13
Nonprompt	88 ± 13
WZ	25.1 ± 1.1
QCD WW	4.8 ± 0.4
$W\gamma$	8.3 ± 1.6
Triboson	5.8 ± 0.8
Wrong sign	5.2 ± 1.1

General event selections

- ✓ Two isolated same-sign leptons
- Two jets with high mass and large η separation
- ✓ Centrality cuts

~50% of prompt backgrounds come from WZ process

Same-sign VBS WW \rightarrow IvIv in the Future

ATL-PHYS-PUB-2017-023

- Studies on the impact of ITk and forward muon tagger from ATLAS *
- Particle-level analysis, with smearing functions to estimate the detector effect

w/ only forward jet, significance actually goes down due to larger increase from background (WZ and QCD WW) April 5, 2018

η coverage		Applied range for			Lepton η		
		jet vertex requirement			range		
No forward tracking	$ \eta_{\rm jet} \le 2.5$				$ \eta_{e,\mu} \le 2.7$		
Forward tracking for jets only	$ \eta_{\rm jet} \le 3.8$				$ \eta_{e,\mu} \le 2.7$		
Forward tracking for jets and electrons	$ \eta_{\rm jet} \le 3.8$			$ \eta$	$ \eta_{e} \leq 4.0, \eta_{\mu} \leq 2.7$		
Forward tracking for jets, electrons and muons	$ \eta_{\rm jet} \le 3.8$			$ \eta_{e,\mu} \le 4.0$			
Expected sensitivity			Z	σ		Z_{σ}	
<u>(stat. + 15% syst.)</u>		ee	eμ	μe	$\mu\mu$	Combined	
No forward tracking		3.9	6.3	7.1	13	17	
Forward tracking for jets only		3.8	6.1	7.0	13	16	
Forward tracking for jets and electrons		3.9	6.2	7.1	13	16	
Forward tracking for jets, electrons and muons		3.9	6.7	7.8	16	19	

General event selections

- ✓ Two isolated same-sign leptons
- ✓ Two jets with high mass and large η separation
- \checkmark Centrality cuts + E_{T}^{miss} + Z veto
- Largest prompt background from WZ

Same-sign VBS WW→lvlv in the Future CMS-PAS-SMP-14-008

- Studies based on 3 different scenarios with different PU and detector aging and coverage configurations from CMS
- Studies with CMS DELPHES simulation
- * 2D template fit (m_{\parallel}, R) for the VBS results
- Total uncertainty around 6% (jet/lepton energy and efficiency, fake rate, lumi. and theoretical)

Fake background included Final results also given as a function of fake rate scale factor

Same-sign VBS WW→lvlv the Future

CMS-PAS-SMP-14-008

More detailed studies based on different component of the VBS 14 TeV processes based on polarization of V bosons b Expected significance **CMS Delphes Simulation** 3.5 * Both longitudinal (LL), both transverse (TT), mixed (LT) Also a much improved limit on QGC couplings Phase II 140 PU **CMS Delphes Simulation CMS Delphes Simulation** 14 TeV 14 TeV ✓ Tracker up to $|\eta| = 4$ 1.5 - WW_{EWK} LL - WW_{EWK} LL 0.4 Phase I 50 PU ✓ Muon up to $|\eta| = 3$ 0.6 --- WW_{EWK} LT --- WW_{EWK} LT Phase I aged 140 PU --- WW_{EWK} TT - WW_{EWK} TT Phase II 140 PU 0.3 Phase II Phase I Phase I aged **Run-I** results (TeV^{-4}) (TeV^{-4}) (TeV^{-4}) (TeV^{-4}) 0.4 2.47 2.49 2.85 43 [12] S_0 Normalized Normalized 0.2 S_1 8.19 8.25 9.45 131 [12] 4000 6000 2000 to unity M_0 1.88 2.03 4.6 [38] 1.76 to unity Luminosity (fb⁻¹) 0.2 M_1 2.54 2.38 2.72 1.7 [38] 0.1 3.78 3.54 4.0569 [12] M_6 3.42 M_7 3.24 3.75 73 [12] 2.4 sigma for 3000 fb⁻¹ T_0 0.17 0.17 0.19 3.4 [39] for the LL part 100 T_1 0.078 0.070 0.080 2.4 [12] 200 300 400 $\Delta \phi$ p_±¹¹ T_2 0.25 0.23 0.25 7.1 [12]

VBS WZ→IvII

- Fully leptonic channel comes with a larger cross section comparing to VBS $ZZ \rightarrow 4I$
- m_{vv} can still be reconstructed by solving for the * neutrino p₇ using the W boson mass constraint
- * Event selections
 - * Exactly 3 leptons with pT > 25 GeV
 - One same-flavor, opposite-sign (SFOS) pair and one additional * lepton

 f_{T1}/Λ^4

- At least two jets with pT > 50 GeV
- m_{ii} > 1 TeV (from two leading jets)
- Rather clean channel. Only irreducible QCD background considered f_{T1} value for a 5 sigma discovery

0.6 TeV⁻

 1.3 TeV^{-4}

VBS WZ→IvII

CMS-PAS-SMP-14-008

- Event selections
 - * Exactly 3 good leptons with pT > 20 GeV
 - * One SFOS pair within 10 GeV Z mass
 - Two leading jets with pT > 30 GeV, invariant mass 600 GeV and pseudo-rapidity difference greater than 4
 - * E_T^{miss} cuts and m_{II} > 20 GeV for all SFOS pairs
- Considered background
 - * QCD production of WZ and ZZ
 - * EWK production of ZZ
- Similar 2D methods as ssWW for VBS results, with different observables

VBS WZ/WW Combined (Leptonic Channels)

CMS-PAS-SMP-14-008

- Combined to determine the significance of the longitudinal part of VV scattering and the 95% CL limit on deviations from the SM due to partial unitarization schemes
- Correlations accounted between two analyses

Promising from fully
leptonic channel
WW/WZ

Phase II 140 PU

- ✓ Tracker up to $|\eta| = 4$
- ✓ Muon up to $|\eta| = 3$

April 5, 2018

VBS WW \rightarrow IvJ

ATL-PHYS-PUB-2012-005 ATL-PHYS-PUB-2012-001

- Larger branching ratio
- Only one neutrino there, better reconstructible
- Higher reconstruction efficiency for jet (merged jet especially in the boosted case) than leptons at high pT
- Disadvantage is also clear: large ttbar background
- ✓ One lepton with pT > 60 GeV, E_T^{miss} > 25 GeV
- Two AntiKt0.4 tag jets with pT > 40 GeV and η separation greater than 5, and m_{ii} > 250 GeV
- One AntiKt0.6 W-jet with pT > 300 GeV and mass around W boson

model	SM
(a_4, a_5)	(0,0)
S/B	$(3.3 \pm 0.3)\%$
$S / \sqrt{B} (L = 300 \text{fb}^{-1})$	2.3 ± 0.3
$S/\sqrt{B} (L = 3000 \text{fb}^{-1})$	7.2 ± 0.1

April 5, 2018

Current VBS ZZ \rightarrow 4I @13 TeV

Phys. Lett. B 774 (2017) 682

General event selections

- $\checkmark\,$ 4 isolated leptons forming two SFOS pair around Z mass
- ✓ Two jets with m_{ii} > 100 GeV
- ✓ BDT method to extract the EWK VBS component

Observed (expected) significance of 2.7 (1.6) sigma from EWK processes

$$\mu = 1.39^{+0.72}_{-0.57}$$
 (stat) $^{+0.46}_{-0.31}$ (syst) $= 1.39^{+0.86}_{-0.65}$

- ✓ gg→ZZ plus two jets diagrams have large contribution, in the EWK sensitive region.
- ✓ Even more important than the QCD qq→ZZ processes at the high m_{jj} region

Future VBS ZZ → 4I

- Cleanest channel with fully reconstructible
 ZZ final state
- Small cross section
- ⋆ → Benefits a lot from the HL-LHC and hopefully not suffers too much from the high PU
- Event selections
 - * Exactly 4 good leptons with pT > 25 GeV
 - * Two SFOS pairs
 - * $m_{jj} > 1$ TeV with two leading jets, with pT > 50 GeV
- Only considered SM QCD ZZ background

April 5, 2018

Summary

- VBS measurements will be a key part of the HL-LHC program, and benefit a lot from the higher luminosity and larger detector coverage in forward region
- * Evidence of longitudinal VV scattering being possible
- * Suffer from higher PU especially for tagging forward jets
 - * How to pick up the correct two tag jets
 - * Jets related uncertainties
- Background component depends on final states, but the irreducible QCD VV +
 2jets processes have large contribution in many channels
- * gg box diagrams give also large contribution for $ZZ \rightarrow 4I$ channel
- Much improved limit on aQGCs

backup

Same-sign VBS WW→IvIv in Future

ATL-PHYS-PUB-2017-023

	Applied range for	Lepton η
	jet vertex requirement	range
No forward tracking	$ \eta_{\rm jet} \le 2.5$	$ \eta_{e,\mu} \le 2.7$
Forward tracking for jets only	$ \eta_{\rm jet} \le 3.8$	$ \eta_{e,\mu} \le 2.7$
Forward tracking for jets and electrons	$ \eta_{\rm jet} \le 3.8$	$ \eta_e \leq 4.0, \eta_\mu \leq 2.7$
Forward tracking for jets, electrons and muons	$ \eta_{\rm jet} \le 3.8$	$ \eta_{e,\mu} \le 4.0$

CMS Upgrade Scenarios

- **Phase I:** the CMS detector in the Phase-I configuration [26], which will allow to collect 300 fb⁻¹ of integrated luminosity, assuming no degradations due to radiation, and 50 pile-up events per collision on average.
- **Phase I aged:** the CMS detector in the Phase-I configuration [26], in which detector upgrades are assumed not to degrade with radiation, while an intermediate aging after 1 ab⁻¹ of integrated luminiosity with 140 pile-up events on average is considered for the barrel calorimetric system.
- **Phase II:** the fully upgraded Phase-II CMS detector, with 140 pile-up events per collision on average. The upgrades are a new radiation-tolerant tracker, with granularity increased by a factor four with respect to the current one, and coverage extended until $|\eta| = 4$; new endcap calorimeters with high granularity and fine longitudinal segmentation; muon detectors improved in redundancy for $1.5 < |\eta| < 2.5$ and extended until $|\eta| = 3$.