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Motivation for a composite Higgs 
An alternative solution to the hierarchy 
problem:  
• Generate a scale ΛHC<<Mpl through 

a new confining gauge group. 
• Interpret the Higgs as a pseudo-Nambu-

Goldstone boson (pNGB) of a spontaneously 
broken global symmetry of the new strong sector. 

The price to pay: 
• From the generic setup, one expects additional  

resonances (vectors, vector-like fermions, scalars) 
around ΛHC (and additional light pNGBs?). 

• The non-linear realization of the Higgs yields 
deviations of the Higgs couplings from their SM 
values. 

• … many model-building questions … 
• … and potentially new signatures for LHC …
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Composite Higgs Models: Towards an underlying 
model and its low-energy phenomenology

Ferretti etal. [JHEP 1403, 077] classified candidate models which: 
c.f. also Gherghetta etal (2014), Vecchi (2015), Ferretti (2016)  for related works on 
individual models 

• contain no elementary scalars (to not re-introduce a hierarchy 
problem), 

• have a simple hyper-color group, 
• have a Higgs candidate amongst the pNGBs of the bound states, 
• have a top-partner amongst its bound states (for top mass via partial 

compositeness), 
• satisfy further “standard” consistency conditions (asymptotic freedom, 

no anomalies) 
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Example: SU(4)/Sp(4) coset based on GHC = Sp(2Nc) 
and colored pNGBs                                         

Motivation
Phenomenology of quark partners

Towards a CH UV embedding and its phenomenology
Conclusions and Outlook

One example: SU(4)/Sp(4) coset based on GHC = Sp(2Nc)

Field content of the microscopic fundamental theory and property transformation
under the gauged symmetry group Sp(2Nc) ⇥ SU(3)c ⇥ SU(2)L ⇥ U(1)Y , and
under the global symmetries SU(4) ⇥ SU(6) ⇥ U(1).

Sp(2Nc) SU(3)c SU(2)L U(1)Y SU(4) SU(6) U(1)
 1

 2
1 2 0

4 1 �3(Nc � 1)q� 3 1 1 1/2
 4 1 1 �1/2
�1

�2

�3

3 1 2/3

1 6 q��4

�5

�6

3 1 �2/3
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Field content of the microscopic fundamental theory and its charges w.r.t. 
the gauge group Sp(2N)×SU(3)×SU(2)×U(1), and the global symmetries 
SU(4)×SU(6)×U(1):
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Bound states of  the model:

Motivation
Phenomenology of quark partners

Towards a CH UV embedding and its phenomenology
Conclusions and Outlook

One example: SU(4)/Sp(4) coset based on GHC = Sp(2Nc)

Bound states of the model:
spin SU(4)⇥SU(6) Sp(4)⇥SO(6) names

  0 (6, 1) (1, 1) �
(5, 1) ⇡

�� 0 (1, 21) (1, 1) �c
(1, 20) ⇡c

�  1/2 (6, 6) (1, 6)  1
1

(5, 6)  5
1

�  1/2 (6, 6) (1, 6)  1
2

(5, 6)  5
2

 � 1/2 (1, 6) (1, 6)  3
 � 1/2 (15, 6) (5, 6)  5

4
(10, 6)  10

4

 �µ 1 (15, 1) (5, 1) a
(10, 1) ⇢

��µ� 1 (1, 35) (1, 20) ac
(1, 15) ⇢c

“Higgs”: ⇡ transforms as 4 � 1 under SO(4) ! identify ⇡ ⌘ (H, ⌘).
top partners: (3, 2, 2)2/3 states (for tL) in  5

1,2, 
5
4 , 

10 and
(3, 1, 1)2/3 or (3, 1, 3)2/3 (for tR) in  1

1,2, 
5
1,2, 3, 

5
4 , 

10
4 .
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contains SU(2)L×SU(2)R 
bidoublet “H”

contain (3,2,2)2/3 
fermions: tL-partners

contain (3,1,X)2/3 
fermions: tR-partners

form a and 𝜂’; SM singlets

20 colored pNGB: 
(8,1,1)0⊕(6,1,1)4/3⊕(6,1,1)-4/3
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This is the BSM + Higgs sector which interacts with SM gauge bosons and matter through: 
SM gauge interactions, (global) anomaly couplings, and mixing of the top with top partners, 

[JHEP1511,201]



Full list of  "minimal" CHM UV embeddings
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Additional two pseudo scalars associated to SSB of U(1)𝜒 ⨉ U(1)𝜓 

In ALL models: 
• One linear combination has a GHC anomaly (η’, no pNGB) 
• One linear combination is GHC anomaly free (a, remaining pNGB)

8/23

New PNGBs and their phenomenology

[JHEP1701,094]

Additional model-dependent pNGBs (colored, EW charged, and neutral):



The timid pNGB summary and phenomenology 
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• The mass ma must result from explicit breaking of the U(1) symmetries → 
treated as free parameter in the effective theory. 

• fa results from chiral symmetry breaking.                         . 
• The WZW coefficients 𝜅i are fully determined by the quantum numbers of 𝜒, 𝜓. 

• Effective couplings of a to the Higgs are induced at loop level : 

a and η’: Arise from the SSB of U(1)𝜒 ⨉ U(1)𝜓. One linear combination has a GHC anomaly 
(η’) and is expected heavier. The orthogonal linear combination (a) is a pNGB.   
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A light pseudo-scalar that is copiously produced at the LHC may still be allowed by present
searches. While masses above 65 GeV are e↵ectively covered by di-photon searches, the lower mass
window can be tested by a new search for boosted di-tau resonances. We test this strategy on a set
of composite Higgs models with top partial compositeness, where most models can be probed with
an integrated luminosity below 300 fb�1.

PACS numbers:

INTRODUCTION

The search for new resonances is one of the main
physics goals at the LHC, with the discovery of a Higgs
boson at an invariant mass of 125 GeV being an illustri-
ous example [1, 2]. The e↵orts continue, mainly focusing
on high mass objects typically heavier than the Higgs it-
self. There are in fact few searches exploring invariant
masses of two Standard Model (SM) particles below, say,
100 GeV: one notable case is the search for a di-photon
resonance [3, 4], mostly motivated by models that fea-
ture an extended Higgs sector, like two Higgs doublet
models (2HDMs) [5] and the next-to-minimal supersym-
metric SM [6].

In this letter, we focus on the LHC phenomenology
of a light new scalar with a mass between 10 and 100
GeV which can resonantly decay into a pair of SM par-
ticles. Generically, light new scalars are strongly con-
strained from electroweak precision measurements (indi-
rectly) and from direct searches at LEP and Tevatron. At
the LHC, besides the above mentioned di-photon chan-
nel, light (pseudo)scalars are usually searched for in the
decays of the 125 GeV Higgs boson. This search strat-
egy in the 10 to 100 GeV window has been mainly mo-
tivated by supersymmetry or 2HDMs. Below roughly
10 GeV, strong bounds arise from searches related to
mesons, or in experiments looking for light axion-like
particles (ALPs) [7–10]. Thus, the common lore is that
a new scalar, in order to escape detection, needs to be
either very heavy or weakly coupled to the SM.

Note, however, that it is enough to have small cou-
plings to electrons and to the electroweak gauge bosons
in order to escape direct LEP searches and electroweak
precision bounds, as well as small couplings to the Higgs
to avoid the Higgs portal constraints. Couplings to glu-
ons (and heavy quarks) are less constrained, leading to

sizable production rates at the LHC. Candidates of this
kind arise naturally in models of composite Higgs which
enjoy a fermionic UV completion [11–15]. Recent lat-
tice results [16] have started to address the mass of such
object in a specific model [17].
In this letter, we will consider this class of models to

explore the 10 to 100 GeV mass window and show that it
is, in fact, very poorly tested. A timid composite pseudo-
scalar (TCP) arises as the pseudo-Nambu-Goldstone bo-
son associated with an anomaly-free U(1) global symme-
try in all models of partial compositeness that enjoy a UV
completion, as defined in Ref. [12]. All the possible mod-
els can be classified, and give precise predictions for the
properties of the TCP candidate [15], thus mapping out a
complete landscape of possibilities. We show that, while
some models are already partly tested by the low mass
di-photon searches, others are completely unconstrained.
We point out that searches for di-tau resonances (which
now start at 90 GeV invariant mass at the LHC [18, 19])
give very promising signals and could be a powerful com-
plementary probe to the di-photon channel, or even be
the only way to access this class of TCPs.

DESCRIPTION OF THE MODELS

The e↵ective Lagrangian we consider is the SM La-
grangian augmented by the following terms, up to di-
mension five operators:

L =
1

2
(@µa)(@

µa)�
1

2
m2

aa
2
�

X

f

iCfmf

fa
a ̄f�

5 f (1)

+
g2sKga

16⇡2fa
Ga

µ⌫G̃
aµ⌫+

g2KWa

16⇡2fa
W i

µ⌫W̃
iµ⌫+

g02KBa

16⇡2fa
Bµ⌫B̃

µ⌫ .

A pseudo-scalar a described by this general Lagrangian
arises, for example, in UV completions of compos-

2

ite Higgs models which were classified and studied in
Refs [12, 15]. Within this class of models, the cou-
pling to the SM fermions given in Eq. (1) is only the
first term of the expansion of the spurion coupling
�mf (h) eiCfa/fa  ̄L R + h.c. (generating the fermions
masses), which breaks explicitly the U(1) shift symme-
try. A derivative coupling of the TCP to fermions of
the form (@µa/fa) ̄f�5�µ f is absent in these models
since the SM fermions are neutral under the TCP U(1)
charge. Although such a coupling can be obtained by us-
ing the fermion equations of motion and integrating by
part the leading term given in Eq. (1), the two couplings
are of genuinely di↵erent origin [20], as manifested in the
higher-order expansion of the spurion coupling. Starting
from the complete spurion coupling, a coupling of the
Higgs to two TCPs, as well as to one TCP and Z boson,
arise at loop level and are given by

Lhaa =
3C2

t m
2
tt

8⇡2f2
av

log
⇤2

m2
t

h(@µa)(@
µa), (2)

LhZa =
3Ctm2

t gA
2⇡2fav

(t � V ) log
⇤2

m2
t

h(@µa)Z
µ, (3)

where we list only the e↵ect of the log-divergence (⇤ ⇠

4⇡fa), gA = �g/(4 cos ✓W ) is the axial coupling of the Z
to tops, and V,t are the corrections from compositeness
to the coupling of the Higgs to vectors and tops, respec-
tively. As X = 1 + O(v2/f2

a ), our result agrees with
the fact that the only non-zero contribution to the hZa
coupling arises from a dimension 7 operator [21].

The couplings to gauge bosons in Eq. (1) arise as
anomalous couplings if the TCP is a (SM singlet) bound
state of underlying SM charged hyperfermions. In this
case, the anomaly coe�cients Kg,W,B are fully deter-
mined by the charges of the hyperfermions. We refer to
[15] for an extensive description of a classification of UV
completions giving rise to this TCP, which yields twelve
models. For the purpose of this letter, the TCP dynamics
in the twelve models is fully specified by the numerical
couplings in Table I 1. Note that, due to the small TCP
mass, top loops also give additional sizable contributions
to the couplings to gauge bosons (not included in the
table, but included in our analysis). Our goal is to con-
front the TCP with the existing searches and to propose
new, more sensitive searches for such object. We treat
the mass ma and the decay constant fa of the TCP as
free parameters. In composite Higgs UV completions,
fa is related to the composite Higgs decay constant f ,
entering in the usual alignment parameter ⇠ = v2/f2

 ,
by a relative coe�cient that was estimated in [15] and
is summarized in Table I. Since bounds on composite

1 The model in [17] is denoted by M6 in this work and in [15],
while the model [11] is denoted by M8.

Kg KW KB Cf fa/f 

M1 -7.2 7.6 2.8 2.2 2.1
M2 -8.7 12. 5.9 2.6 2.4
M3 -6.3 8.7 -8.2 2.2 2.8
M4 -11. 12. -17. 1.5 2.0
M5 -4.9 3.6 0.40 1.5 1.4
M6 -4.9 4.4 1.1 1.5 1.4
M7 -8.7 13. 7.3 2.6 2.4
M8 -1.6 1.9 -2.3 1.9 2.8
M9 -10. 5.6 -22. 0.70 1.2
M10 -9.4 5.6 -19. 0.70 1.5
M11 -3.3 3.3 -5.5 1.7 3.1
M12 -4.1 4.6 -6.3 1.8 2.6

TABLE I: Couplings in the twelve minimal composite Higgs
UV embedding models [15] which are used as benchmark mod-
els. For the top, several possibilities arise depending on the
choice of top partner representation: here, as an illustration,
we take the same coupling as for lighter fermions, whose mass
arise from bilinear four-fermion interactions. The ratio fa/f 

indicates the expected scale-ratio of the TCP decay constant
fa and the composite Higgs decay constant f .

Higgs models require f & 800 GeV, fa is expected to
be naturally of the order of 1÷ 2 TeV.

BOUNDS FROM EXISTING SEARCHES

M1
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M4
M5

M6
M7
M8
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FIG. 1: Constraints on fa as a function of ma for the bench-
mark models M1 - M12, defined in Table I. The bounds arise
from di-muon searches [22, 23] in the low mass range, di-
photon searches [3, 4] in the higher one and from the BSM
decay width of the Higgs [24] below 65 GeV.

Since the TCP is a gauge singlet, its couplings to Z
and W are induced by the anomaly and top loops, thus
they are always much smaller than those of a SM Higgs
boson. Hence, bounds from all LEP searches for a light
Higgs, which are based on Z associated production, are
evaded. At hadron colliders the TCP can be is copi-
ously produced via gluon fusion. However, only very
few Tevatron or LHC two-body resonant searches reach



Coefficients of a for sample models M1 - M12

Ct: [arXiv:1710.11142]

[arXiv:1710.11142]
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For a given model, we can combine bounds on all channels to get a bound on fa . 
E.g.: M8. 

[arXiv:1803.00021] 11/23

• a is produced in gluon fusion (controlled by Kg/fa). 
• Assoc. production with a Z is tiny ➝ No bounds from LEP Higgs searches. 

• a decays to  gg, WW, ZZ, Z𝛾, 𝛾𝛾, ff  with fully determined branching ratios. 

• For heavier a, LHC di-boson searches apply [JHEP 1701, 094]. 
• For light a (translating existing bounds and searches):

TCP Phenomenology



NOTE: Low mass region has a “gap” between 15 - 65 GeV.

𝛾𝛾 
[PRL113, 17801] 

(ATLAS) 
[CMS-PAS-HIG-17-013]

BR(h➝BSM)<.34 
[JHEP1608, 045] 
(ATLAS+CMS)

𝜇𝜇 
[PRL109, 121801] 

(CMS) 
[ATLAS-CONF-2011-020]

[arXiv:1710.11142]
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TCP Phenomenology



How can we search the gap at low mass?  𝜏𝜏!

The gluon-fusion production 
cross section for light a is large…

… and the 𝜏𝜏 branching ratio is 
(for most models) not small.   

13/23

  Soft 𝜏lep or 𝜏had cannot be used 
to trigger, but ISR can boost the 
gg ➝ a ➝ 𝜏𝜏 system (at the cost 
of production cross section, but 
we have enough).  

[arXiv:1710.11142]

[arXiv:1710.11142]



How can we search the gap at low mass?  𝜏𝜏!
As a very naive proof of principle 
analysis we look for a  j 𝜏𝜇 𝜏e final 
state (jet + opposite sign, opposite 
flavor leptons) with cuts: 

• pT𝜇   > 42 GeV (for triggering)   

• pTe    > 10 GeV 
• m𝜇e   < 100 GeV 

• ΔR𝜇j > 0.5, ΔRej > 0.5,  

• ΔR𝜇e  < 1.0

14/2313 TeV, 300 fb expected bounds (S/√B = 3)
[arXiv:1710.11142]

[arXiv:1710.11142]



How can we search the gap at low mass?  𝜏𝜏!

This first proof of principle 
study is not optimized. 

• Cutting harder on ΔR𝜇e  can 
substantially increase 
background suppression for 
the lighter mass range. 

• We did not use any 𝜏 ID or 
triggers.      

• We only used the OSOF lepton channel. 𝜏𝜇𝜏𝜇, 𝜏𝜇𝜏had, 𝜏had𝜏had  have 
larger branching ratios but require a more careful background 
analysis.  
[And needs tagging efficiencies for boosted 𝜏𝜇𝜏had, 𝜏had𝜏had  systems 
which are beyond our capabilities, but possible for experimentalists.]
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Implications for VLQ searches
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Current VLQ searches focus on charge 5/3, 2/3, -1/3, -4/3 top partners which are pair 
(or single) produced and decay into t/b and h/W/Z.  

If pNGBs beyond the Higgs are present in the model they are conceivably lighter than 
top partners.  

How large are top partner decay rates into pNGBs other 
than the Higgs? 
 
The top obtains its mass through mixing with a top partner. But the top partners come 
a full multiplets of the global symmetry groups and the Higgs comes in the 
Goldstone-boson matrix which includes ALL pNGBs of the model. Thus, we can 
relate the coupling of a top partner to the Higgs to its couplings to other pNGBs in 
underlying models. 

Scanning through the different underlying models we looked for “common exotic” 
top partner decays and found:



Candidate 1: decays to the singlet pseudo-scalar a   
 Effective Lagrangian(s): 

4. Charged pNGB, X5/3 ! t �+. Some cosets, like SU(5)/SO(5) [2], also contain

additional charged pNGBs which contribute to the decays of the top partners. These

decay channels are usually present in addition to the standard ones.

A fifth possibility is that some top partners can decay into a stable (or long-lived)

pNGB, which may be identified with a Dark Matter candidate: typically, this leads to

exclusive decay modes, as shown in Refs [34, 35]. Such decay modes are e�ciently covered

by searches focused on supersymmetric final states [36]. Thus, we do not consider this

possibility here.

In Section 2, we introduce simplified model descriptions and benchmark points for the

scenarios listed above. We discuss how the standard searches for VLQs are a↵ected by

the new decay modes and which new experimentally promising signatures arise. Several

additional decay modes for VLQs have already been considered in the literature, both

for composite models [37, 38] and supersymmetric models [39] (see also Ref. [40] for a

more general table of allowed final states). Our approach di↵ers, as we identify testable

predictions which arise from models with a simple underlying description, where the new

modes are predicted and not added by hand. To better substantiate this, in Section 3,

we present underlying models and model-parameters that predict the field content of the

simplified models of Section 2 as part of their (light) particle spectrum, and that yield

the e↵ective couplings used as benchmark points. Finally, we present our conclusions in

Section 4.

2 Simplified scenarios

2.1 Singlet pseudo-scalar, T ! t a and B ! b a

As a first simplified scenario, we consider a model with a charge 2/3 top partner T and

a lighter pseudo-scalar a. Such a light pseudo-scalar a is genuinely present in models of

PC with a gauge-fermion underlying description [26–30], where it can be associated with

the pNGB of a global U(1) symmetry. We parameterise the interactions of a vector-like

top-partner with Standard Model particles and the pseudo-scalar a as1

LT = T
�
i /D �MT

�
T +

✓
TW,L

g
p
2
T /W

+
PLb+ TZ,L

g

2cW
T /ZPLt

�T
h,L

MT

v
ThPLt+ iTa,L TaPLt+ L $ R+ h.c.

◆
, (2.1)

where PL,R are left- and right-handed projectors, and T denotes the top partner mass

eigenstate with mass MT . The first three interaction terms dictate the partial widths of

T decays into bW , tZ, and th as often considered in vector-like top-partner models. In

the above parametrisation, the coe�cients T
W/Z/h,L/R

are determined by the SU(2) charge

and the mixing angles of the top partner with the elementary top. If only decays into SM

1
We follow the parametrisation of Ref.[18] for the couplings to SM particles.

– 3 –

particles are considered, the current bound is of order MT & 1 TeV [41–47].2 The last term

in Eq. (2.1) parameterises the coupling of T to the pseudo-scalar a. This term does not

significantly a↵ect the top-partner production, which occurs through QCD pair production,

or through single-production dictated by the first three terms (Cf. e.g. Refs [18, 19] for

top partner single- and pair production rates). If MT > ma+mt, the last term in Eq. (2.1)

adds an additional decay channel of T ! t a. Explicit expressions for the tree-level decay

widths can be found in Ref. [55].

In analogy, as a second simplified model, we introduce a vector like quark partner B

with charge �1/3, with the simplified Lagrangian

LB = B
�
i /D �MB

�
B +

✓
BW,L

g
p
2
B /W

�
PLt+ BZ,L

g

2cW
B/Z

+
PLb (2.2)

�B
h,L

MB

v
BhPLb+ iBa,LBaPLb+ L $ R+ h.c.

◆
.

To illustrate the relevance of the new decay channels, we consider two benchmark

models, “Bm1” and “Bm2”, arising from an underlying UV embedding of composite Higgs

models with SU(4)/Sp(4) breaking, which are discussed more in detail in Sec. 3. In Fig. 1

we show the branching ratios in the two benchmarks as a function of the a mass. Each

scenario focuses on one vector-like partner, either T or B. The two benchmark models are

respectively characterised by the following couplings:

Bm1 : MT = 1 TeV , TZ,R = �0.03 , Th,R = 0.06 , Ta,R = �0.24 , Ta,L = �0.07 ;

Bm2 : MB = 1.38 TeV , BW,L = 0.02 , BW,R = �0.08 , Ba,L = �0.25 , (2.3)

while the ones that are not reported are suppressed and thus negligible. The branching

ratios of T ! t a and B ! b a are model dependent. However, the benchmarks we

present in Fig. 1 clearly show that, in fully realistic models, they can be comparable to the

branching ratios into SM particles, which are considered in standard searches at the LHC.

To determine new possible final states that can occur from the T ! t a (or B ! b a)

decay, we briefly review the properties of, and constraints on, the pseudo-scalar a. The

interactions of the pseudo-scalar a with SM particles can be parameterised as 3

La =
1

2
(@µa)(@

µa)�
1

2
m2

aa
2
�

X

f

iCa

f
mf

fa
af̄�5f +

g2sK
a
g

16⇡2fa
aGa

µ⌫G̃
aµ⌫+

g2Ka

W

8⇡2fa
aW+

µ⌫W̃
�,µ⌫

+
e2Ka

�

16⇡2fa
aAµ⌫Ã

µ⌫+
g2c2

W
Ka

Z

16⇡2fa
aZµ⌫Z̃

µ⌫+
egcWKa

Z�

8⇡2fa
aAµ⌫Z̃

µ⌫ . (2.4)

2
Bounds on MT from QCD produced T -pairs depend on the T branching ratios into bW, tZ, th. The

strongest reported bound is for 100% branching ratio T ! bW (MT & 1.3 TeV) [41, 43], while bounds

on 100% branching ratio T ! tZ or T ! th are around 1 TeV. Bounds on MT from electroweak single-

production [48–54] are even more model-dependent as the production cross section depends on additional

BSM couplings.
3
We give the e↵ective Lagrangian up to dimension 5 operators. Additional interactions can be generated

at higher order. See Ref. [56] for couplings haa and hZa.

– 4 –

Benchmark parameters (obtained as eff. parameters from UV model):  

particles are considered, the current bound is of order MT & 1 TeV [41–47].2 The last term

in Eq. (2.1) parameterises the coupling of T to the pseudo-scalar a. This term does not

significantly a↵ect the top-partner production, which occurs through QCD pair production,

or through single-production dictated by the first three terms (Cf. e.g. Refs [18, 19] for

top partner single- and pair production rates). If MT > ma+mt, the last term in Eq. (2.1)

adds an additional decay channel of T ! t a. Explicit expressions for the tree-level decay

widths can be found in Ref. [55].

In analogy, as a second simplified model, we introduce a vector like quark partner B

with charge �1/3, with the simplified Lagrangian

LB = B
�
i /D �MB

�
B +
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BW,L
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p
2
B /W

�
PLt+ BZ,L

g

2cW
B/Z

+
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�B
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MB

v
BhPLb+ iBa,LBaPLb+ L $ R+ h.c.

◆
.

To illustrate the relevance of the new decay channels, we consider two benchmark

models, “Bm1” and “Bm2”, arising from an underlying UV embedding of composite Higgs

models with SU(4)/Sp(4) breaking, which are discussed more in detail in Sec. 3. In Fig. 1

we show the branching ratios in the two benchmarks as a function of the a mass. Each

scenario focuses on one vector-like partner, either T or B. The two benchmark models are

respectively characterised by the following couplings:

Bm1 : MT = 1 TeV , TZ,R = �0.03 , Th,R = 0.06 , Ta,R = �0.24 , Ta,L = �0.07 ;
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while the ones that are not reported are suppressed and thus negligible. The branching

ratios of T ! t a and B ! b a are model dependent. However, the benchmarks we

present in Fig. 1 clearly show that, in fully realistic models, they can be comparable to the

branching ratios into SM particles, which are considered in standard searches at the LHC.
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Bounds on MT from QCD produced T -pairs depend on the T branching ratios into bW, tZ, th. The

strongest reported bound is for 100% branching ratio T ! bW (MT & 1.3 TeV) [41, 43], while bounds

on 100% branching ratio T ! tZ or T ! th are around 1 TeV. Bounds on MT from electroweak single-

production [48–54] are even more model-dependent as the production cross section depends on additional

BSM couplings.
3
We give the e↵ective Lagrangian up to dimension 5 operators. Additional interactions can be generated

at higher order. See Ref. [56] for couplings haa and hZa.
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• T and B can be produced like 
“standard” top partners: QCD pair 
production or single production. 

• New final states: MANY,  
depending on ma and single- or pair-
production  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Candidate 2: Decays of a top partner to the “exclusive pseudo-scalar” 𝜂. 

In models with SU(4)/Sp(4) breaking, one specific top partner couples only to 
the CP-odd SM singlet pNGB 𝜂. Both are odd under 𝜂-parity. 𝜂-parity is 
broken by EW anomaly couplings, and 𝜂 decays to WW, ZZ, Z𝛾. 

Effective Lagrangian:

the W/Z and Higgs mass ranges. Thus the signal generated by T ! t a is likely to

be discarded unless its mass is close to the one of the standard bosons.

• The final state T ! t a ! t⌧+⌧� could also arise from T ! t h/t Z but is to our

knowledge currently not covered by any top partner searches. For VLQ masses much

larger than mt+ma, boosted di-tau systems may arise, thus o↵ering interesting final

states at the LHC [56, 92, 93].

• Decays of a to vector bosons (if kinematically allowed) can yield t��, tZ�, tWW ,

or tZZ resonances. In our benchmark model(s), these a decays do not have large

branching ratios, nevertheless the final states (and the kinematics with a boosted top

and a di-boson resonance) o↵er many handles for excellent SM background rejection.

Similar considerations hold for the VLQ partner B.

2.2 Exclusive pNGB, eT ! t ⌘

As a second simplified scenario, we consider a model with a top partner eT with charge

2/3 that does not mix with the SM top, and a lighter pseudo-scalar ⌘. This situation is

realised, for example, in composite Higgs models based on SU(4)/Sp(4) breaking, where

⌘ is the additional singlet and the top partner couplings respect a parity associated with

⌘. A concrete realisation will be discussed in Sec. 3.2. The model is described by the

Lagrangian

L eT = eT
�
i /D �MeT

� eT �

⇣
i

eT
⌘,L

eT⌘PLt+ L $ R+ h.c.
⌘
, (2.7)

for the interactions involving eT , which di↵ers from Eq.(2.1) by the absence of couplings to

the SM bosons. For the pseudo-scalar ⌘, in principle, one can write an e↵ective Lagrangian

similar to Eq.(2.4). However, in this specific case, not all couplings arise on the same

footing. To start, if the couplings of the top respect ⌘-parity, no couplings of ⌘ to tops

are generated at leading order [94]. The couplings to light fermions are model dependent,

but they may also be suppressed: for instance, if they are generated by bilinear couplings,

they are absent at the leading order [95]. Thus, to keep the scenario minimal, we will only

consider couplings to gauge bosons:

L⌘ =
1

2
(@µ⌘)(@

µ⌘)�
1

2
m2

⌘⌘
2 +

g2sK
⌘
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µ⌫+
egcWK⌘

Z�

8⇡2f⌘
⌘Aµ⌫Z̃

µ⌫ , (2.8)

for the interactions of ⌘ with the SM particles.

In the benchmark model we are interested in, as detailed in Sec. 3.2, ⌘ arises as a

singlet from the coset SU(4)/Sp(4) in the EW sector. As a consequence, K⌘
g = 0, and the

couplings to the EW bosons can be expressed in terms of two parameters, as in Eq.(2.5),

with the further constraint K⌘

B
= �K⌘

W
. Thus, the coupling to photons vanishes, and the

branching ratios are fixed in terms of gauge couplings, as shown in Fig. 3. To be concrete,
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but they may also be suppressed: for instance, if they are generated by bilinear couplings,
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for the interactions of ⌘ with the SM particles.

In the benchmark model we are interested in, as detailed in Sec. 3.2, ⌘ arises as a

singlet from the coset SU(4)/Sp(4) in the EW sector. As a consequence, K⌘
g = 0, and the

couplings to the EW bosons can be expressed in terms of two parameters, as in Eq.(2.5),

with the further constraint K⌘
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The 𝜂-parity top partner is only QCD-pair 
produced. 

Final states: |tWW + tZZ + tZ𝛾| 2 19/23
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like supersymmetry [10–12], and their phenomenology can be studied in e↵ective models,

independently of the theoretical framework they come from (see, for instance, Refs [13–18]).

In this paper, we use the framework of partial compositeness and a composite pNGB

Higgs as a guide for characterising the phenomenology of VLQs. This has already been

the guiding principle behind the current experimental VLQ searches. However, the phe-

nomenological expectations where strongly based on the most minimal model, where the

Higgs boson is the only light pNGB in the theory [19]. The two main assumptions, which

have been used for most searches, are first, that the VLQ only decays to a standard boson

(W , Z and the Higgs h) plus a standard quark, and second, that the quarks belong to the

third generation, i.e. only top or bottom quarks. We will show that, in models that enjoy

a simple underlying description in terms of a confining gauge symmetry, the former con-

straint is not well justified. In fact, generically new decay channels are present that often

dominate over the standard ones. The main underlying reason is that the most minimal

symmetry breaking pattern SO(5) ! SO(4) is not realised in any known simple underlying

model, and thus additional light pNGBs are present in the spectrum. This is true both in

models where only fermions are present, as described in Refs [20–23], and in models with

fermion–scalar bound states [24, 25].

Analysing the classes of models in the literature, we identified 4 types of situations

that can strongly a↵ect top partner decays, as summarised below:

1. Singlet pseudo-scalar, T ! t a and B ! b a. The presence of a light CP-odd

pNGB associated to a non-anomalous U(1) global symmetry is ubiquitous to models

of PC with a gauge-fermion underlying description [26–30]. We show that the light

pseudo-scalar a always couples to the top partners. Thus, a charge 2/3 VLQ T and

a charge �1/3 VLQ B also decay to a and a SM quark, as long as the pNGB a is

lighter than the VLQ. While the presence of a adds VLQ decay channels, the pair

and single production rates of the VLQs are barely modified.

2. Exclusive pNGB, eT ! t ⌘. The extended pNGB cosets may also contain additional

scalars that couple exclusively with one specific top partner, eT . This is the case for a
CP-odd singlet ⌘ present in the SU(4)/Sp(4) ' SO(6)/SO(5) coset [31]. The charge

2/3 top partner eT , which is part of a 5 of Sp(4) ' SO(5), does not decay to two SM

particles but exclusively into t ⌘, and it cannot be singly- but only pair-produced at

colliders.

3. Coloured pNGB, X5/3 ! b̄ ⇡6. The presence of coloured fermions or scalars in the

underlying theory yields potentially light coloured pNGBs. Their couplings to the

VLQs imply additional decay channels beyond the standard ones. As an example, we

consider a pNGB transforming as a sextet of QCD colour and with charge 4/3. This

state is present in some underlying models [32], and it can couple to the exotic charge

5/3 top partner X5/3. Note that coloured pNGB can also modify the production rates

of the VLQs, especially if heavier than them [33].

– 2 –

Candidate 3:                       (with subsequent 𝝅6 → t t) 

In models with SU(6)/SO(6) breaking in the color sector. 
Effective Lagrangian:

composite top partners. In models with a fermionic underlying description, this implies

the presence of coloured pNGBs, which may be lighter than the top partners and can thus

appear in top partner decays.6

A colour octet pseudoscalar ⇡8, neutral under the EW interactions, is ubiquitous in

models with a fermionic underlying description [30]. It can couple to a quark and quark-

partner and therefore appear in quark partner decays, and itself decays into tt̄, gg or g�.

The presence of ⇡8 thus gives rise to final states similar to the ones described in Sec. 2.1

(with the addition of the g� channel).

Other colour charged pNGBs are present in some of the models. Here, we focus on the

charge-4/3 colour sextet ⇡6 [32]. The main reason behind this choice is that it can modify

the decays of a charge 5/3 top partner X5/3. The latter is a commonly considered state

which is present in top partner multiplets in an SU(2)L⇥SU(2)R bi-doublet. It is normally

assumed to decay exclusively into t W+, which yields a same-sign lepton (SSL) signature

from leptonic W decays [96], with low SM background and thus very high sensitivity.

X5/3 is therefore an ideal target for searches at hadron colliders. Semi-leptonic decays

of t W+ have higher background but also a higher branching ratio and provide another

attractive channel. For pair-produced X5/3, the current bound on its mass is MX5/3
> 1.3

TeV [43, 97–99], while higher sensitivity for single-produced X5/3 is possible, but model-

dependent [100]. However, all these bounds assume the absence of “exotic” X5/3 decays.

The e↵ective Lagrangian for the X5/3 couplings, including the sextet, reads

L
⇡6
X5/3

= X5/3

⇣
i /D �MX5/3

⌘
X5/3

+

✓
XW,L

g
p
2
X5/3 /W

+
PLt+ iX⇡6,L

X5/3⇡6PLb
c + L $ R+ h.c.

◆
, (2.10)

while the one associated to the ⇡6 couplings to SM particles is

L⇡6 = |Dµ⇡6|
2
�m2

⇡6
|⇡6|

2 +
⇣
i⇡6

tt,R
t⇡6(PRt)

c + L $ R+ h.c.
⌘

,

where bc and tc denote the charge conjugate of the bottom and the top quark fields. Note

that, in the model we consider, ⇡6 is a singlet of SU(2)L. The coupling ⇡6
tt,L

to left handed

tops are thus suppressed by m2
t /f

2
⇡6

with respect to ⇡6
tt,R

. The sextet decays as ⇡6 ! tt,

with large dominance to right-handed tops.

The sextet arises, for example, as part of the pNGB spectrum in UV embeddings of

composite Higgs models with SU(4)/Sp(4) breaking [32] (see Sec.3.2). For illustration

purposes, we again use this underlying model to define a benchmark model, Bm3, in

Sec. 3.3. The values of the couplings are

Bm3 : MX5/3
= 1.3 TeV , XW,L = 0.03 , XW,R = �0.11 , X⇡6,L = 1.95 , ⇡6

tt,R = �0.56 ,

(2.11)

while the other couplings are suppressed, and f⇡6 = 430 GeV (note that f⇡6 is not directly

related to the compositeness scale for the Higgs, as it comes from a di↵erent sector of the

theory, and we use here an estimate with respect to a decay constant f = 1 TeV in the

6
If a coloured pNGB is heavier than top partners, it can a↵ect their production rates [33].
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models with a fermionic underlying description [30]. It can couple to a quark and quark-

partner and therefore appear in quark partner decays, and itself decays into tt̄, gg or g�.
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(with the addition of the g� channel).
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composite Higgs models with SU(4)/Sp(4) breaking [32] (see Sec.3.2). For illustration

purposes, we again use this underlying model to define a benchmark model, Bm3, in

Sec. 3.3. The values of the couplings are
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6
If a coloured pNGB is heavier than top partners, it can a↵ect their production rates [33].
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Benchmark parameters (obtained as eff. parameters from UV model):  

composite top partners. In models with a fermionic underlying description, this implies

the presence of coloured pNGBs, which may be lighter than the top partners and can thus

appear in top partner decays.6

A colour octet pseudoscalar ⇡8, neutral under the EW interactions, is ubiquitous in

models with a fermionic underlying description [30]. It can couple to a quark and quark-

partner and therefore appear in quark partner decays, and itself decays into tt̄, gg or g�.

The presence of ⇡8 thus gives rise to final states similar to the ones described in Sec. 2.1

(with the addition of the g� channel).

Other colour charged pNGBs are present in some of the models. Here, we focus on the

charge-4/3 colour sextet ⇡6 [32]. The main reason behind this choice is that it can modify

the decays of a charge 5/3 top partner X5/3. The latter is a commonly considered state

which is present in top partner multiplets in an SU(2)L⇥SU(2)R bi-doublet. It is normally

assumed to decay exclusively into t W+, which yields a same-sign lepton (SSL) signature

from leptonic W decays [96], with low SM background and thus very high sensitivity.

X5/3 is therefore an ideal target for searches at hadron colliders. Semi-leptonic decays

of t W+ have higher background but also a higher branching ratio and provide another

attractive channel. For pair-produced X5/3, the current bound on its mass is MX5/3
> 1.3

TeV [43, 97–99], while higher sensitivity for single-produced X5/3 is possible, but model-

dependent [100]. However, all these bounds assume the absence of “exotic” X5/3 decays.

The e↵ective Lagrangian for the X5/3 couplings, including the sextet, reads
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where bc and tc denote the charge conjugate of the bottom and the top quark fields. Note

that, in the model we consider, ⇡6 is a singlet of SU(2)L. The coupling ⇡6
tt,L

to left handed

tops are thus suppressed by m2
t /f

2
⇡6

with respect to ⇡6
tt,R

. The sextet decays as ⇡6 ! tt,

with large dominance to right-handed tops.

The sextet arises, for example, as part of the pNGB spectrum in UV embeddings of

composite Higgs models with SU(4)/Sp(4) breaking [32] (see Sec.3.2). For illustration

purposes, we again use this underlying model to define a benchmark model, Bm3, in

Sec. 3.3. The values of the couplings are

Bm3 : MX5/3
= 1.3 TeV , XW,L = 0.03 , XW,R = �0.11 , X⇡6,L = 1.95 , ⇡6

tt,R = �0.56 ,

(2.11)

while the other couplings are suppressed, and f⇡6 = 430 GeV (note that f⇡6 is not directly

related to the compositeness scale for the Higgs, as it comes from a di↵erent sector of the

theory, and we use here an estimate with respect to a decay constant f = 1 TeV in the

6
If a coloured pNGB is heavier than top partners, it can a↵ect their production rates [33].
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Candidate 4:                        and  
In models with SU(5)/SO(5) breaking in the EW sector, we have charged 
(and doubly charged) pNGBs. 
Effective Lagrangian:

2.4 Charged pNGB, X5/3 ! t �+

As a second example for exotic decays of a charge 5/3 top partner, we consider a model

with a colour-neutral, electrically charged scalar �+. The latter arises for example as part
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Note that we have defined a unique decay constant, f�, for both charged scalars, as they

usually originate from the same coset. In models based on the SU(5)/SO(5) breaking

pattern (minimal coset with charged pNGBs), the charged scalar �± belongs to SU(2)L-

triplets. Thus, in the non-zero hypercharge triplet, a doubly charged scalar �±± is present

and has been added to the previous Lagrangians. The latter can not be neglected, even in

this simplified scenario, as it a↵ects the decays of X5/3. Thus, the new exotic channels in

this scenario are X5/3 ! t �+ and X5/3 ! b �++.
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while the other couplings are suppressed, and f� = 1 TeV. The branching ratios are dis-

played in Fig. 5, showing that non-negligible rates into the charged pNGBs �± and �±±

are present in realistic models. Note that we assume for simplicity a common mass m� for

the two charged pNGBs.

Due to its anomalous couplings in Eq. (2.13), the charged pNGB �+ can decay into a

pair of SM gauge bosons, either W+� or W+Z. A coupling to tb is also generated from PC.

Couplings to light fermions are model dependent, as they vary according to the mechanism

generating their mass: here, for simplicity, we will neglect them. For the doubly charged

pNGB �++, the only available channel arises from an anomalous couplings to W+W+. In

the underlying models based on SU(5)/SO(5), the anomalous couplings of �+ are related

by gauge couplings, as they both originate from the coupling K�

WB
of the triplet to an

SU(2)L and a U(1)Y gauge boson. This leads to the relations

K�

W�
= K�

WB
, K�

WZ
= �K�

WB
t2w . (2.15)

Below the tb̄ threshold, �+ mostly decays into W+�: this is due both to the suppression

of the coupling to W+Z (shown above) and to the fact that the mass threshold for the

WZ channel is very close to the tb̄ one. Above the tb threshold, the fermionic channel

typically dominates. Note that below the W mass, the decays into a virtual W boson

(i.e., three body decays) may be competitive with more model dependent decays into light

fermions, thus we will not consider this mass region here. It should also be noted that, while

dedicated searches are not available, collider bounds on direct production of the charged

scalars are very mild: bounds on similar models, which should be applied with a pinch of

salt, point towards mass bounds below the W mass [101, 102], so no direct bounds should

apply to the region we chose. The above scenario leads to di↵erent signatures depending

on the masses of the charged pNGBs:

• For m�+ below the tb threshold, the channel X5/3 ! t �+
! tW+� leads to extra

hard photons in addition to the standard final states.

• Above the tb̄ threshold, �+ decays almost exclusively into tb, thus o↵ering an inter-

esting final state X5/3 ! ttb̄ that will be easily covered by the existing 4-top searches

when X5/3 is pair-produced and both decay into this exotic channel. Di↵erent decays

on the two legs produce final states similar to four tops, i.e. ttb̄t̄W� (for one decay

through �+ and one standard) or ttb̄b̄W�W� (for one decay through �+ and one

through ���).

• The channel X5/3 ! b �++
! bW+W+ leads to a signature similar to the standard

X5/3 ! tW (with subsequent top decay to bW+), but with di↵erent kinematics.

Finally, let us remark that the charged pNGBs couple in general to the other top

partners. The resulting new decay modes are discussed in more details in Sec. 3.4. One

interesting final state that we want to mention is due to decays of a charge 2/3 partner in

the charged scalar leading to T ! b�+
! bW+�, which is similar to a top final state with

the addition of a hard photon.
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Benchmark parameters (obtained as eff. parameters from UV model):  
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Common exotic VLQ decays  

Decays of the pNGBs: 
𝜙++ → W+ W+  

𝜙+ → tb, W+ Z, W+ 𝜸  

Production of X5/3: 
Single- or pair-production. 



Conclusions & Outlook
• EFT descriptions of composite Higgs models are only part of the story. UV 

embeddings need to be studied in more detail.  They lead to novel (as well as 
already well-known) BSM LHC signatures. 

• We showed that additional pNGBs are present in CH UV embeddings (colored 
as well as uncolored ones). We presented constraints for the SM singlet and 
propose to search for the light singlet in the boosted di-tau channel. 

• Decays of top partners to t/b + pNGBs rather than to t/b + W/Z/h occur 
commonly in CH UV embeddings.  

23/23
There is a lot to explore!

• Obtained from underlying descriptions we presented 4 “common exotic 
decays” of top partners with effective Lagrangians and benchmark values. 

• The final states resulting from these decays are not targeted in current 
LHC searches. Many are partially covered by existing searches and  
recasts can provide some bounds.
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Chiral Lagrangian for the pNGBs
The pseudo-Goldstones are parameterized by the Goldstone boson 
matrices 

as a measure of the fine tuning needed in the alignment of the vacuum3. This notation has

the additional advantage that the Higgs couplings to the vector bosons are the same for all

cosets and are, in fact, the same as those of the minimal coset SO(5)/SO(4). However, this

forces us to normalize the chiral lagrangian di↵erently depending on the nature of the  

irrep. To allow us to write a common expression for all cases, we introduce the quantity

c5 =

8
<

:

p
2 for  real ,

1 elsewhere .
(3)

in terms of which

⌃r = ei2
p
2c5⇡a

rT
a
r /fr · ⌃0,r , �r = eic5ar/far , (4)

where T a
r are the non-abelian generators in the fundamental rep normalized so that

Tr[T a
r T

b
r ] = �ab/2, fr and far are the decay constants for the non abelian pions and the

singlets respectively. The matrix ⌃0,r is the EW-preserving vacuum.

Following this convention, the lowest order chiral Lagrangian can be written as:

L�pt =
X

r= ,�

f 2

r

8c2
5

Tr[(Dµ⌃r)
†(Dµ⌃r)] +

f 2

ar

2c2
5

(@µ�r)
†(@µ�r) . (5)

Notice that we chose the same normalization (driven by the nature of the  irrep) for both

cosets, in order to simplify the notation for the abelian pNGBs later.

A few comments are in order at this stage: for the singlets, the lowest order operator

simply gives a kinetic term which does not depend on far . However, the couplings of ar will

always be generated by the couplings of the U(1) currents to the underlying fermions, which

depends on an arbitrary parameter, i.e. the charge Qr of the fermions under the global

U(1). This consideration justifies why the decay constants fr and far are, in principle, not

the same. In the following, we fix the decay constants by choosing Qr = 1 for r =  ,�.

A stronger relation between the decay constants of the singlets and the non-abelian pions

in each sector can only be drawn assuming that both are dominantly made of di-fermion

states. In QCD, this situation is achieved in the large-Nc limit [28], following from Zweig’s

theorem, where the singlet associated to the anomalous U(1) is also expected to become

3 [A]: do we want to add a sentence like ”EWPT and Higgs couplings generically already gives a constraints

of about ✏ < 0.1 [...]”?
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where r = 𝜓,𝝌 ,  𝝅a are the non-abelian Goldstones, Ta are the corresponding broken 
generators, 𝚺0,r is the EW preserving vacuum, and 𝑎 are the U(1) Goldstones  
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where we chose the normalization such that                            where  𝜃 is the vacuum 
misalignment angle.

anomaly cannot be canceled by the composite states, the corresponding symmetry must be

spontaneously broken. Reversing the role of the fermions we reach the same conclusion for

the other coset. We point out that this argument is not rigorous. Its main weaknesses are the

possible existence of phase transitions [26], invalidating the massless limit, as well as the fact

that we are ignoring bound states composed by five or more fundamental fermions, which

can sometimes be formed using only one fermion species. We find it however su�ciently

convincing to assume that both condensates form, a necessary condition for the existence of

the pNGBs considered in this work.

III. PROPERTIES OF THE U(1) PNGBS (a AND ⌘0)

A. Chiral Lagrangian

In this section we will describe in detail how an e↵ective Lagrangian formalism can be

used to describe the properties of the singlets associated to the global U(1)’s. A chiral

perturbation theory for the class of models under interest has been recently presented in

Ref. [27], however only including the singlet associated with the non-anomalous U(1). Here,

we want to be more general and keep both states in the low energy Lagrangian, as the mass

generated for the anomalous current may be not very large.

As the model contains two fermion condensates, the chiral Lagrangian can be described

in terms of two copies of the pNGB matrix ⌃r and two singlets �r, where r =  ,�. The

⌃r’s contain the pNGBs from the non-abelian cosets, while �r’s contain the singlets. Fur-

thermore, we want to choose the normalization of the decay constants fr’s in such a way

that the mass of the W (and Z) bosons can be written as

mW =
g

2
f sin ✓ , (1)

where ✓ is an angle describing the misalignment of the vacuum (thus, sin ✓ = 1 represents

the “Technicolor” limit of the theory, where f = vSM = 246 GeV). In this way, we can

define the ratio

✏ =
v2
SM

f 2

 

(2)

9

In the large N limit, expect                          . 

light. All mesons can therefore be described by a single meson matrix �2

r⌃r (the �2

r comes

from the fact that the condensate has charge 2). The chiral Lagrangian, then, looks like

L�pt =
X

r= ,�

f 2

r

8c2
5

Tr[(Dµ�
2

r⌃r)
†(Dµ�2

r⌃r)] , (6)

which is consistent with the above formulation if far =
p
Nrfr, Nr being the di-

mension of the flavour matrix ⌃r (N = 4 for SU(4)/Sp(4) and SU(4)⇥SU(4)/SU(4),

N = 5 for SU(5)/SO(5), N� = 6 for SU(6)/Sp(6) and SU(6)/SO(6), and N� = 3 for

SU(3)⇥SU(3)/SU(3)). In the following, we will be interested in cases like the large-Nc limit

of QCD where both singlets can be light, so that we introduce the parameters

⇠r = Nr
f 2

r

f 2
ar

, (7)

which should be equal to 1 in the large-Nc limit. Note that corrections to this relation will

be generated by loop corrections in the chiral Lagrangian [29, 30].

Out of the 2 singlets we introduced, only one remains a pNGB because it is associated

to the anomaly-free combination of U(1). If q and q� are the charges associated to the

anomaly-free current, the pNGB ã and the anomalous ⌘̃0 can be defined as

ã =
q fa a + q�fa�a�q

q2 f
2
a 

+ q2�f
2
a�

, ⌘̃0 =
q fa a� � q�fa�a q

q2 f
2
a 

+ q2�f
2
a�

. (8)

For later convenience, we can define a single dimensionless parameter describing the mixing,

i.e. an angle ⇣, and a single scale fa:

tan ⇣ =
q�fa�
q fa 

, fa =
q
q2 f

2
a 

+ q2�f
2
a� . (9)

As physics observables do not depend on the normalisation of the charges, we can always

chose q2 + q2� = 1 without loss of generality. The values of q�/q for the various models are

listed in Table I.

B. Couplings

The couplings of the singlets can only be generated by terms explicitly breaking the global

symmetries. The partial gauging of the non-abelian global symmetries cannot do the job, as

the gauged generators are not charged under the U(1)’s. If a mass term for the underlying

11

Upshot: - The pNGBs are described in a non-linear sigma model. 
              - The different pNGBs can have different decay constants  
                (ratios can be estimated, but in the end only calculated  
                on the Lattice.                          . TH



1. The SM gauge group is weakly gauged, which explicitly breaks the 
global symmetry. This yields mass contributions for SM charged 
pNGBs. As the underlying fermions are SM charged, it also yields 
anomaly couplings of pNGBs to SM gauge bosons.  

2. The elementary quarks (in particular tops) need to obtain masses. This 
can be achieved through linear mixing with composite fermionic 
operators (“top partners”), which explicitly break the global symmetries.  

3. Mass terms for the underlying fermions explicitly break the global 
symmetries and give (correlated) mass contributions to all pseudo 
Goldstones.

Weak gauging and partial compositeness is commonly used in composite Higgs 
models to explain the generation of a potential for the Higgs (aka EW pNGBs). 
On the level of the underlying fermions, such mixing requires 4-fermion 
operators. 

What are the implications of the above points for the SM singlet, and the color-
octet pNGB? 

Sources of masses and couplings of the pseudo Goldstone bosons:

TH



Couplings of pNGBs to SM gauge bosons:
The underlying fermions are charged under the SM gauge fields, and thus ABJ 
anomalies induce couplings of the Goldstone bosons to the SM fields which are fully 
determined by the underlying quantum numbers. 

Singlets:

where 

The relation above shows that typically we would expect the octet to be heavier than the

light singlet pNGB, even if the color corrections were small.

The octet has also the possibility to couple to tops: like in the case of singlets, the

presence or not of this coupling depends on the representation of the composite top partners

under the global symmetries. As the octet pNGB is associated to the bound state h��i,

which is also charged under the U(1)�, it is straightforward to find a correlation between the

e↵ective charges of the top mass and the presence of a coupling with the octet. If the top

mass has a e↵ective charge ±2 under U(1)�, as indicated in the previous section, then the

e↵ective operator generating the mass of the top needs to be “dressed” by the appropriate

pNGB matrix �2

�⌃�. On the other hand, if the charge is zero, then it is not needed to couple

⌃� to the top mass term, and a coupling to the octet is not necessarily present. One can

thus find a nice correlation between the charges determining the coupling of the singlets to

the tops, and the presence of an octet coupling. If present, the coupling will have the form:

mtt̄L⌃�tR + h.c. ⇠ mtt̄t+ i
p
2c5

mt

f�
�a t̄�5�at+ . . . (33)

where �a are the Gell-Mann matrices, and we have omitted the other pNGB and singlets. For

the light quarks, if their masses are generated by 4-fermion interactions then no couplings

to the octet pNGB are generated.

It should also be remarked that, contrary to the case of the singlet, the presence of top

couplings will also generate corrections to the masses of the octet. Those contributions are

more model dependent, as they crucially depend on the representations of the top partners,

and we refer the reader to [41] for an example.

E. Wess-Zumino-Witten terms

The couplings of the singlets to the SM gauge bosons, generated by the WZW term, can

be computed in a similar way as in QCD [29]. Following the normalisation adopted in this

work, the couplings can be written as

LWZW � ↵A

8⇡
c5
Cr

A

far
�ab ar "

µ⌫↵�Aa
µ⌫A

b
↵� , (34)

where

Cr
A�

ab = 2drTr[SaSb] , for complex reps ,

Cr
A�

ab = drTr[SaSb] , for real/pseudo-real reps , (35)
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r coset  C 
W C 

B coset � C�
G C�

B

complex SU(4)⇥SU(4)/SU(4) d d SU(3)⇥SU(3)/SU(3) d� 6Y 2
� d�

real SU(5)/SO(5) d d SU(6)/SO(6) d� 6Y 2
� d�

pseudo-real SU(4)/Sp(4) d /2 d /2 SU(6)/Sp(6) d� 6Y 2
� d�

TABLE II: Coe�cients of the anomalous couplings.

where dr is the dimension of the rep r of hypercolor, and Sa,b in the trace correspond to

the gauged generators with gauge coupling ↵A = g2A/(4⇡). The normalization of the gauged

generators depends on the global group the gauge interactions are embedded in, so that

their trace is not the same as for the generators of the flavor group. Specifically, we note

that, in the cases of interest

Tr[SaSb] = �ab , for SU(5) ( ) and SU(6) (�) ;

Tr[SaSb] = 1

2
�ab , for all other cases .

For completeness and comparison, the WZW term for the non-abelian pions is

LWZW �
p
↵A↵A0

4
p
2⇡

c5
Cr

AA0

fr
cabc ⇡a

r "
µ⌫↵�Aa

µ⌫A
0b
↵� , (36)

where

Cr
AA0cabc = drTr[T

a
⇡{Sb, Sc}] (37)

for complex r, and there is an additional factor of 1/2 for real/pseudo-real representations.

1. Singlets

The coe�cients for the anomalous couplings of the two singlets are summarized in Ta-

ble II, where we recall that d and d� are the dimensions of the representation of the fermions

under hypercolor. These numbers, calculated directly from the WZW term, have a simple

physical interpretation. In the EW sector described by  , up to a factor of 1/2, the CW (CB)

coe�cients count the number of Weyl spinors transforming as SU(2)L (SU(2)R) doublets:

d in the SU(4)/Sp(4) coset and 2d in the other two cases. Furthermore, as the theory is

19

Non-abelian pNGBs:
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Upshot: - The couplings CrA of pNGBs to gauge bosons are fully  
                 fixed by the quantum numbers of 𝝌 and 𝜓. 
              - One model ⇔ one set of Branching ratios.  
              - Only unknown parameters are decay constants fr. TH



Couplings to tops and top mass:

We want to realize top masses through partial compositeness, i.e. 

where the dots include terms with more fields and dabc = 2Tr[T a{T b, T c}] is a fully-symmetric

tensor. The presence of mixing with or couplings to other non-abelian pions depends on

the coset. In the EW sector, 3 possible cosets are allowed. For the minimal SU(4)/Sp(4),

we found that no mixing and no coupling is possible as the trace Tr[⌃ X
†
 ] is real. In

the SU(4)⇥SU(4)/SU(4) case, at leading order in v/f no mixing is generated however a

coupling to the triplets and to the second doublet is generated, allowing 2-body decays

into these additional pions. This coupling can potentially a↵ect the phenomenology of the

singlet, if the additional pions are light enough. In the SU(5)/SO(5) case, we found that a

mass mixing with all neutral pseudo-scalar is generated by the Higgs VEV at leading order.

More details on such couplings can be found in the Appendix ??. Finally, in the color sector

generated by the �� condensate, we found that a coupling to the colored pions is present in

the SU(6)/Sp(6) and SU(6)/SO(6) cases.

1. Couplings to fermions

The couplings of the strong dynamics to SM fermions is another source of explicit breaking

of the global symmetries that may induce direct couplings of the singlets to fermions. The

class of models we want to investigate, implements partial compositeness to generate a mass

for the top, where the mass is proportional to two linear mixings of the elementary fermions

to composite states:

Lmix ◆ yL q̄L qL + yR  ̄tRtR + h.c. (16)

where  qL/tR are fermionic composite operators that have the same quantum numbers as the

left-handed and right-handed tops respectively, and which contains the top partners at low

energy. As such operators are made of 3 fermions, they carry charge under the two U(1): the

couplings of the pions can then be recovered by assigning a charge to the pre-Yukawas yL/R

that match the one of the composite operators. Without loss of generality, each spurion can

be associated with a combination of pion matrices

yL ! �
nL 

 �nL�
� yL , (17)

and similarly for yR. As mtop ⇠ yLyR, the singlets decouple from the top quark as long as

the charges of the two pre-Yukawas are opposite [19, 31]. However, this situation can never
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where 𝛙 are the composite top partners, depending on the model either 𝜓𝜓𝝌 or 𝜓𝝌𝝌 
bound states. The spurions yL,R thus carry charges under the U(1)𝝌,𝜓 . 
The top mass in partial compositeness is proportional to yL* yR fand thus also has definite 
U(1)𝝌,𝜓 charges n𝜓,𝝌 . For 𝜓𝜓𝝌:  

be realised in the class of models under consideration. If both pre-Yukawas involve the same

operator in terms of fundamental states, then the charges are the same as the U(1)’s are

axial. The charge assignments depend on the structure of the fermionic bound states: if the

fermion contains   �, then the possible charges of the spurions and of the top mass are:

yL , yR ⇠ (±2, 1) , (0,�1) , ) mtop ⇠ (±4, 2) , (0,±2) , (±2, 0) ,

although not all the possible cases are generated in all the models. For  ��, it su�ces to

exchange the two charges. We see that in no case the charge of the top mass can be zero

for both singlets. The couplings of the singlets to tops can therefore be written as

Ltop = mtop�
n 
 �n�

� t̄LtR + h.c. = mtop t̄t+ ic5

✓
n 

a 
fa 

+ n�
a�
fa�

◆
mtop t̄�5t+ . . . (18)

Changing basis to ã and ⌘̃0, the couplings read

ic5
mtop

fa

✓
(n q + n�q�) ã+

✓
n�q 

fa 
fa�

� n q�
fa�
fa 

◆
⌘̃0
◆
t̄�5t , (19)

where we recognise that the couplings of the pNGB ã is proportional to the charge under

the non-anomalous U(1).

In this class of composite Higgs models, the matter content of the confining sector cannot

accommodate enough partners to realize partial compositeness for all fermions: the Yukawa

couplings of the light fermions must therefore come from a di↵erent operator. A simple

possibility [32] is to introduce couplings of SM bilinears f̄f with the strong sector:

ybil
⇤2

F

f̄f  ̄ , (20)

where ybil ⇠ mf and the flavour scale ⇤F can be much higher than the condensation scale.

While these operators are generically irrelevant, they can be large enough to reproduce light

quark masses, and suppressed enough to evade flavour bounds [4, 33, 34]. Another possibility

would be that the masses of light fermions are generated at higher scale, possibly via partial

compositeness [35]. The U(1) symmetries can be formally restored promoting ybil to be a

spurion only charged under U(1) , and this implies a low energy coupling proportional to

mf�
2

 f̄LfR + h.c. = mf f̄f + i2c5
mf

fa 
a f̄�5f + . . . (21)

This coupling has the same form as the one we derived for the top, but with fixed charges

n = 2 and n� = 0.
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The singlet-to-top coupling Lagrangian can be written as 
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While these operators are generically irrelevant, they can be large enough to reproduce light

quark masses, and suppressed enough to evade flavour bounds [4, 33, 34]. Another possibility

would be that the masses of light fermions are generated at higher scale, possibly via partial

compositeness [35]. The U(1) symmetries can be formally restored promoting ybil to be a

spurion only charged under U(1) , and this implies a low energy coupling proportional to

mf�
2

 f̄LfR + h.c. = mf f̄f + i2c5
mf

fa 
a f̄�5f + . . . (21)

This coupling has the same form as the one we derived for the top, but with fixed charges

n = 2 and n� = 0.
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NOTE: 
• The term that generates the top mass also generates couplings of the pNGBs to tops. 
• The possible top couplings depend on the model and top partner embedding, with a discrete set of 

choices.  
• For the singlet pNGBs, the coupling never vanishes as in no case n𝜓 = 0 = n𝝌. 

• The analogous argument yields zero coupling of 𝝅8 to tops if  n𝝌 = 0.

Upshot: - pNGBs couple to top-pairs. 
               - there is a discrete set of possible couplings per model. TH



Underlying fermion mass terms:

The SM singlet pNGBs cannot obtain mass through the weak gauging. To make 
them massive,  we add mass terms for 𝝌 (and in principle 𝜓) which break the 
chiral symmetry. They yield mass terms 

fermions is added, however, it necessarily carries the U(1) charge of the specific fermion.

Following [27], we add the fermion masses in the Lagrangian as follows:

Lm =
X

r= ,�

f 2

r

8c2
5

�2

rTr[X
†
r⌃r] + h.c. =

X

r= ,�

f 2

r

4c2
5


cos

✓
2c5

ar
far

◆
ReTr[X†

r⌃r]

� sin

✓
2c5

ar
far

◆
ImTr[X†

r⌃r]

�
. (10)

The spurions Xr are related to the the fermion masses linearly

Xr = 2Brmr r =  ,� , (11)

where Br is a dimensional constant (that can, in principle, be calculated on the Lattice).

Note that, without loss of generality, mr is a real matrix in the non-abelian flavour space of

the fermion specie r. From the above expressions, we can read o↵ the masses of the singlets

and non-abelian pions:

m2

ar = 2
f 2

r

f 2
ar

Br Tr[⌃0,rmr] ,
�
m2

⇡r

�ab
= 4Br Tr[T

aT b⌃0,rmr] . (12)

In the limit where the condensates are aligned with the mass matrices mr = µr⌃
†
0,r, which

corresponds to the EW preserving vacuum and where µr is a common mass for all underlying

fermions, the masses simplify to

m2

⇡r = 2Brµr , m2

ar = 2Nr
f 2

r

f 2
ar

Brµr = ⇠r m
2

⇡r , (13)

where Nr is the dimension of the matrix ⌃r. We recover the result that in the large-Nc limit,

the masses of all mesons are equal as ⇠r = 1.

We also note that Eq. (10) contains linear couplings of the singlets to the non-abelian

pions:

Lm � � f 2

r

2c5far
arImTr[⌃rX

†
r ] , (14)

which potentially include mixing terms between the singlet and the non-abelian pions. In the

limit where both vacuum and mass matrices are aligned with the EW preserving direction,

the expression simplifies to

Lm � �Brµr
f 2

r

farc5
arImTr[ei2

p
2c5

⇡a
r

fr
Ta
r ] =

p
2c2

5
m2

⇡r

3frfar
ar

X

abc

dabc⇡a
r⇡

b
r⇡

c
r + . . . , (15)
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If mr is a common mass for all underlying fermions of species r, we get 
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Upshot: - masses of singlet and non-abelian pNGBs are related. 
               - ratios can be estimated, but calculating them needs the 
                 Lattice

TH



Singlets: masses and mixing
The states a𝜓,𝝌 mix due to an anomaly w.r.t. the hyper color group which breaks U(1)𝜓 x U(1)𝝌 
to U(1)a.       
The anomaly free and anomalous combinations are 

light. All mesons can therefore be described by a single meson matrix �2

r⌃r (the �2

r comes

from the fact that the condensate has charge 2). The chiral Lagrangian, then, looks like

L�pt =
X

r= ,�

f 2

r

8c2
5

Tr[(Dµ�
2

r⌃r)
†(Dµ�2

r⌃r)] , (6)

which is consistent with the above formulation if far =
p
Nrfr, Nr being the di-

mension of the flavour matrix ⌃r (N = 4 for SU(4)/Sp(4) and SU(4)⇥SU(4)/SU(4),

N = 5 for SU(5)/SO(5), N� = 6 for SU(6)/Sp(6) and SU(6)/SO(6), and N� = 3 for

SU(3)⇥SU(3)/SU(3)). In the following, we will be interested in cases like the large-Nc limit

of QCD where both singlets can be light, so that we introduce the parameters

⇠r = Nr
f 2

r

f 2
ar

, (7)

which should be equal to 1 in the large-Nc limit. Note that corrections to this relation will

be generated by loop corrections in the chiral Lagrangian [29, 30].

Out of the 2 singlets we introduced, only one remains a pNGB because it is associated

to the anomaly-free combination of U(1). If q and q� are the charges associated to the

anomaly-free current, the pNGB ã and the anomalous ⌘̃0 can be defined as

ã =
q fa a + q�fa�a�q

q2 f
2
a 

+ q2�f
2
a�

, ⌘̃0 =
q fa a� � q�fa�a q

q2 f
2
a 

+ q2�f
2
a�

. (8)

For later convenience, we can define a single dimensionless parameter describing the mixing,

i.e. an angle ⇣, and a single scale fa:

tan ⇣ =
q�fa�
q fa 

, fa =
q
q2 f

2
a 

+ q2�f
2
a� . (9)

As physics observables do not depend on the normalisation of the charges, we can always

chose q2 + q2� = 1 without loss of generality. The values of q�/q for the various models are

listed in Table I.

B. Couplings

The couplings of the singlets can only be generated by terms explicitly breaking the global

symmetries. The partial gauging of the non-abelian global symmetries cannot do the job, as

the gauged generators are not charged under the U(1)’s. If a mass term for the underlying
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The singlet mass terms (including contributions from underlying fermion masses) is thus  

C. Masses and Mixing of the Singlets

The masses for the singlets are generated by the masses of the underlying fermions, m 

and m�, and the instanton related to the anomalous current. Even though a coupling to

tops and light fermions exist, those do not lead to corrections to the mass of the singlets.

One way to see this is that all loops of fermions will be proportional to the absolute value of

the spurions in order to write an operator which is gauge invariant. Thus, the dependence

on the singlet pions, which comes in via exponentials, vanishes. As discussed above, mixing

to singlets in the sets of non abelian pions, specifically from the EW coset, can also be

generated if the masses of the underlying fermions are not aligned with the EW preserving

vacuum and they will be suppressed by the Higgs VEV squared. In the following we will

simplify the discussion and neglect such terms, which are not a↵ecting other sectors of the

theory like the Higgs potential.

The mass matrix for the singlets, therefore, can be written from

Lmass =
1

2
m2

a�a
2

� +
1

2
m2

a 
a2 +

1

2
M2

A(cos ⇣a� � sin ⇣a )
2 (22)

whereM2

A is the mass generated by instanton e↵ects, proportional to the topological suscepti-

bility of the hypercolour group, for the singlet ⌘̃0 associated with the anomalous combination

of U(1)’s. For now, we will consider it as a free parameter, even though the topological mass

is, in principle, calculable once the underlying dynamics is specified.

In the following, we want to entertain the case where the topological mass may be small,

as it happens in large-Nc QCD. In fact, in many of the models we consider the number

of colours is large and/or the representation of the underlying fermions is large. Another

physical consideration allows us to simplify the mixing structure: the mass of the pNGBs

in the EW sector, due to the condensation of the  ’s, also contributes to the mass of the

SM-like Higgs boson. Thus, its value is constrained to be small in order to minimize the

fine tuning in the Higgs mass. While the details depend on the specific model, some general

considerations are in order. In fact, in some cases such mass term can be used to stabilize

the Higgs potential against he contribution of the top loops and obtain a small misalignment

in the vacuum [36, 37]. In such cases, one would expect m⇡ ⇠ f . Alternatively, if the

top partners are light enough, their contribution to the Higgs potential is also enough to

stabilize it and give the correct value of the Higgs mass [38–40]. In this case, therefore, one
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where                             and  MA is a mass contribution generated by instanton effects. 

light. All mesons can therefore be described by a single meson matrix �2

r⌃r (the �2

r comes

from the fact that the condensate has charge 2). The chiral Lagrangian, then, looks like

L�pt =
X

r= ,�

f 2

r

8c2
5

Tr[(Dµ�
2

r⌃r)
†(Dµ�2

r⌃r)] , (6)

which is consistent with the above formulation if far =
p
Nrfr, Nr being the di-

mension of the flavour matrix ⌃r (N = 4 for SU(4)/Sp(4) and SU(4)⇥SU(4)/SU(4),

N = 5 for SU(5)/SO(5), N� = 6 for SU(6)/Sp(6) and SU(6)/SO(6), and N� = 3 for

SU(3)⇥SU(3)/SU(3)). In the following, we will be interested in cases like the large-Nc limit

of QCD where both singlets can be light, so that we introduce the parameters

⇠r = Nr
f 2

r

f 2
ar

, (7)

which should be equal to 1 in the large-Nc limit. Note that corrections to this relation will

be generated by loop corrections in the chiral Lagrangian [29, 30].

Out of the 2 singlets we introduced, only one remains a pNGB because it is associated

to the anomaly-free combination of U(1). If q and q� are the charges associated to the

anomaly-free current, the pNGB ã and the anomalous ⌘̃0 can be defined as

ã =
q fa a + q�fa�a�q

q2 f
2
a 

+ q2�f
2
a�

, ⌘̃0 =
q fa a� � q�fa�a q

q2 f
2
a 

+ q2�f
2
a�

. (8)

For later convenience, we can define a single dimensionless parameter describing the mixing,

i.e. an angle ⇣, and a single scale fa:

tan ⇣ =
q�fa�
q fa 

, fa =
q
q2 f

2
a 

+ q2�f
2
a� . (9)

As physics observables do not depend on the normalisation of the charges, we can always

chose q2 + q2� = 1 without loss of generality. The values of q�/q for the various models are

listed in Table I.

B. Couplings

The couplings of the singlets can only be generated by terms explicitly breaking the global

symmetries. The partial gauging of the non-abelian global symmetries cannot do the job, as

the gauged generators are not charged under the U(1)’s. If a mass term for the underlying
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The masses of the pNGBs are  

would require that the contribution of the fermion mass were small, i.e. m⇡ ⌧ f . This

situation contrasts with the coset generated by �: here, colored pNGBs are expected and

the strong constraints from searches at the LHC require their masses to be close to the TeV

scale [41]. It is thus natural to expect that m⇡ ⌧ m⇡� . In the following, we will work

under this assumption.

We will first diagonalise the mass matrix keeping all the mass terms in Eq. (22). We

define the mass eigenstate as
0

@ a

⌘0

1

A =

0

@ cos↵ sin↵

� sin↵ cos↵

1

A

0

@ a 

a�

1

A (23)

with

m2

a/⌘0 =
1

2

⇣
M2

A +m2

a� +m2

a 
⌥
q

M4

A +�m4
a� + 2M2

A �m2
a� cos 2⇣

⌘
, (24)

where, for short notation, we define �m2

a� = m2

a� � m2

a 
> 0. The mixing angle can be

expressed in terms of the mass eigenvalues and the parameter ⇣ as

tan↵ = tan ⇣

0

@1�
�m2

⌘0 +�m2

a �
q
(�m2

⌘0 ��m2
a)

2 � 4�m2

⌘0 �m2
a tan

�2 ⇣

2�m2

⌘0

1

A , (25)

where, again for short notation, we define the masses after subtraction of the contribution

of the  masses, as �m2

a/⌘0 = m2

a/⌘0 � m2

a 
. Note that for ma ⌧ m⌘0 (ma� ⌧ MA), then

↵ ⇠ ⇣ and the mass eigenstates coincide with the pNGB and the anomalous combination,

as expected.

The mass matrix depends on 4 independent parameters: 3 masses and the angle ⇣. It is

convenient to trade two of them for the mass eigenvalues which have a more direct physical

meaning. Thus, we can define a “physical basis” thanks to the following relations:

2m2

a� = m2

⌘0 +m2

a �
q
(m2

⌘0 �m2
a)

2 � 4(m2

⌘0 �m2
a 
)(m2

a �m2
a 
) tan�2 ⇣ , (26)

2M2

A = m2

⌘0 +m2

a � 2m2

a 
+
q

(m2

⌘0 �m2
a)

2 � 4(m2

⌘0 �m2
a 
)(m2

a �m2
a 
) tan�2 ⇣ . (27)

However, there are constraints on the value of the physical masses. First of all, from the

positivity of the argument of the square root in the above formulas, we can derive a lower

bound on the mass di↵erence:

m2

⌘0 �m2

a >
2 cos ⇣

1� cos ⇣
(m2

a �m2

a 
) . (28)
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and the interactions in the mass eigenbasis are obtained by rotating from the a𝜓,𝝌 basis into the a,η’ 
basis with 
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meaning. Thus, we can define a “physical basis” thanks to the following relations:

2m2

a� = m2

⌘0 +m2

a �
q
(m2

⌘0 �m2
a)

2 � 4(m2

⌘0 �m2
a 
)(m2

a �m2
a 
) tan�2 ⇣ , (26)

2M2

A = m2

⌘0 +m2

a � 2m2

a 
+
q

(m2

⌘0 �m2
a)

2 � 4(m2

⌘0 �m2
a 
)(m2

a �m2
a 
) tan�2 ⇣ . (27)

However, there are constraints on the value of the physical masses. First of all, from the

positivity of the argument of the square root in the above formulas, we can derive a lower

bound on the mass di↵erence:
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Upshot: - The ⟨𝝌𝝌⟩ and ⟨𝜓𝜓⟩ pNGBs mix through an anomaly 
term and through their mass terms. TH



Colored PNGBs (the color octet 𝝅8)

• 𝝅8 is single-produced in gluon fusion or pair-produced through QCD. 

• 𝝅8 decays to gg, gɣ, gZ, tt with fully determined branching fractions into dibosons: 

• For Y𝞆 =1/3: gg/gɣ/gZ = 1 / .05 / .015, Y𝞆 =2/3: gg/gɣ/gZ =  1 / .19 / .06.  

• The resonance is narrow. 

Phenomenology

Effective Lagrangian:

where in the CH UV embeddings:      
                                                                          ,  

-

From the above we can see that the two masses can be equal only in the limiting cases

⇣ = ±⇡/2 and ⇣ = 0, when the two U(1) pNGBs decouple: in the former, a� is identified

with the non-anomalous U(1), while in the latter it is a . Note that the apparent divergence

for ⇣ = 0 is removed by the fact that ma = ma in that limit. The value of the lighter mass

is also a monotonically increasing function of MA, thus it reaches the maximum value for

MA ! 1:

min(m2

a 
,m2

a�) = m2

a 
< m2

a < m2

a� sin
2 ⇣ +m2

a 
cos2 ⇣ . (29)

It is also interesting to notice that the mixing angle ↵ is bounded between (assuming ma <

ma�):

0 <
tan↵

tan ⇣
< 1 . (30)

D. Non-abelian pions: the octet

Among the many non-abelian pions present in these models, there is a common player

that appears necessarily in all cosets: a color octet from the �� condensation. Independently

on the representation of � under the confining hypercolour, the octet � can be identified as a

bound state of h�1�2i, where �1,2 are the fermions transforming like a QCD color triplet and

anti-triplet respectively. Due to its ubiquitous presence, and the largish production cross

sections one may expect at the LHC, in the following we will consider its phenomenology

and possible connections with the properties of the singlets.

As a first connection, we note that its mass can be expressed in terms of the �-mass as

m2

�
= m2

⇡� + Cg
3

4
g2s f 2

� =
1

⇠ �
m2

a� + Cg
3

4
g2s f 2

� , (31)

where the second term comes from loop corrections from QCD, and Cg > 0 is an unknown

order one number (the loop contribution is cut o↵ at a scale ⇤ ⇠ 4⇡f�). This provides a link

between the mass of the octet and the masses in the singlet sector: in fact, ma� is related to

the singlet masses by Eq. (26). We also recall that ⇠� ⇠ 1, as expected in the large Nc-limit

in QCD. In the limit of ma ⌧ m⌘0 , ma ⇠ ma� sin ⇣, thus

m2

⇡8 ⇠
m2

a

⇠� sin
2 ⇣

+ Cg
3

4
g2s f 2

� . (32)
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quantify the relevance of top decays, following Eq. (62) we determined the minimum value

of Ct/g as a function of B/g and W/g, M⇡0 above which the decay into tops yields

the strongest constraint. The results are shown in Fig. 6 for a set of sample masses (4 plots

on the top), and projected along the two model lines (two plots on the bottom). The plot

shows that in the regions where final states with EW bosons dominate the bound, the tt̄

final state overcomes the constraint for large values of the top couplings with Ct ⇠ g. On

the other hand, in the central region where gg drives the bound, much smaller values of the

top coupling are enough to drive the constraint.

B. Phenomenology of the color octet

The color octet ⇡8, which is present in all models discussed in Sec. II, can be described

by the e↵ective Lagrangian

L⇡8 =
1

2
(Dµ⇡

a
8
)2 � 1

2
m2

⇡8
(⇡a

8
)2 + i Ct8

mt

f⇡8

⇡a
8
t̄�5

�a

2
t

+
↵sg8

8⇡f⇡8

⇡a
8
✏µ⌫⇢�


1

2
dabc Gb

µ⌫G
c
⇢� +

g0B8

gsg8
Ga

µ⌫B⇢�

�
, (63)

where the covariant derivative contains QCD interactions with gluons. In the models dis-

cussed in this article (f⇡8 = f�), matching with Eq.s (46) and (37), the coe�cients are equal

to

g8 =
p
2c5 d� , B8 =

p
2c5 2Y� d�, Ct8 = n�

p
2c5 . (64)

The octet ⇡8 is produced at the LHC in pairs via QCD interactions or singly via gluon fusion

11. The production cross section at the LHC for 8 and 13 TeV are shown in Fig. 7, where

we used XXXX.

11 Single production through gluon-photon fusion would require very large hypercharge of the constituent

fermions, so we neglect it, here. Single production from tt̄ fusion is also suppressed by the need of creating

top paris from gluon splittings as well as by the additional (mt/f⇡8
)2 suppression from (63).

34

quantify the relevance of top decays, following Eq. (62) we determined the minimum value

of Ct/g as a function of B/g and W/g, M⇡0 above which the decay into tops yields

the strongest constraint. The results are shown in Fig. 6 for a set of sample masses (4 plots

on the top), and projected along the two model lines (two plots on the bottom). The plot

shows that in the regions where final states with EW bosons dominate the bound, the tt̄

final state overcomes the constraint for large values of the top couplings with Ct ⇠ g. On

the other hand, in the central region where gg drives the bound, much smaller values of the

top coupling are enough to drive the constraint.

B. Phenomenology of the color octet

The color octet ⇡8, which is present in all models discussed in Sec. II, can be described

by the e↵ective Lagrangian

L⇡8 =
1

2
(Dµ⇡

a
8
)2 � 1

2
m2

⇡8
(⇡a

8
)2 + i Ct8

mt

f⇡8

⇡a
8
t̄�5

�a

2
t

+
↵sg8

8⇡f⇡8

⇡a
8
✏µ⌫⇢�


1

2
dabc Gb

µ⌫G
c
⇢� +

g0B8

gsg8
Ga

µ⌫B⇢�

�
, (63)

where the covariant derivative contains QCD interactions with gluons. In the models dis-

cussed in this article (f⇡8 = f�), matching with Eq.s (46) and (37), the coe�cients are equal

to

g8 =
p
2c5 d� , B8 =

p
2c5 2Y� d�, Ct8 = n�

p
2c5 . (64)

The octet ⇡8 is produced at the LHC in pairs via QCD interactions or singly via gluon fusion

11. The production cross section at the LHC for 8 and 13 TeV are shown in Fig. 7, where

we used XXXX.

11 Single production through gluon-photon fusion would require very large hypercharge of the constituent

fermions, so we neglect it, here. Single production from tt̄ fusion is also suppressed by the need of creating

top paris from gluon splittings as well as by the additional (mt/f⇡8
)2 suppression from (63).

34

CPNGB



Colored PNGBs 
Constraints from pair production:

Right: Pair production cross 
section and bounds from pair 
produced di-jet searches [CMS, 
PLB747, 98] and 4t searches 
[ATLAS, JHEP 08 (2015),105 
and JHEP10 (2015), 150]. All 
data from LHC @ 8 TeV, still. 

Left: Implied bounds on the Ct8/
𝜅g vs. M𝝅8  parameter space. 

13 TeV bound from ICHEP on 
di-jet pairs [ATLAS-
CONF-2016-084]

[JHEP1701,094]

CPNGB



Colored PNGBs Constraints from single production: 
(see JHEP 1701 (2017) 094 for studies included; pre-Moriond 2017)

FIG. 10: Bounds on � j resonances from 13 TeV searches and 8 TeV searches on the 13

TeV production crosssection times branching ratio. 8 TeV bounds have been rescaled by

the ratio of 13 TeV / 8 TeV production cross section for gluon fusion in order to allow

direct comparison.

For the analysis for single-produced color octet states we follow the same strategy as

for the single-produced singlet pseudo-scalar pNGBs in Sec. IVA. The analysis is simpler

because the color octet state is a singlet under SU(2)L, such that the branching fractions

BF�

g�/gg and BF�

gZ/gg in Eq. (59) are fixed up to a discrete choice Y� = ±1/3 or 2/3. For

these two choices, we can directly translate the bounds on the g� channel (Fig. 10) and

the gg and tt̄ channels (Fig. 3) into bounds � production cross section as a function of the

underlying model parameters C�/g, M�. The results are shown in Fig. 11.

V. IMPLICATIONS FOR COMPOSITE MODELS: A CASE STUDY

The couplings in Eq. (34) are mapped to the model independent parametrization Eq. (43)

with

A

f�
�ab ⌘ c5C

 
Ac

ab

fa 
cos↵ +

c5C
�
Ac

ab

fa�
sin↵ (60)

for A = g,W,B if � = a. Similarly the coupling to tops is matched as

C�
f�

⌘ c5

✓
n 
fa 

cos↵ +
n�
fa�

sin↵

◆
. (61)
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Colored PNGBs 
Constraints from single and pair production:

-

Channels with the strongest 
bound: gg (red), gɣ (cyan), tt 
(gray).  
Contours give bounds on the 𝝅8 
production cross section in pb.

Disclaimer: These plots do not 
include experimental bounds 
after Oct 2016. 

CPNGB



Example: 
For models with EW breaking pattern SU(4)/Sp(4), top-partners come in 
Sp(4) representations, e.g. 5 (for the tL partner) and 1 (for the tR partner). 

to remove the couplings without a↵ecting the mass of the top. To clarify this statement,

we can check the result in the limit where the singlet is much lighter than the doublet, i.e.

for sL ⌧ 1:

�(T2 ! t a)

�(T2 ! t �0) + �(T2 ! b �+)
sL!0
=

1

2
⇠2S

✓
M 0

S

fa

◆2
 

v
p
2mtop

!2

s4R , (3.9)

which is substantial as long as sR ⇠ 1.

3.2 The SU(4)/Sp(4) scenario

We now analyse explicit models of composite Higgs: we first consider the coset SU(4)/Sp(4),

which is the minimal one to enjoy a simple gauge-fermion underlying realisation [9]. The

composite VLQs as well as the pNGBs (including the Higgs boson) now originate from

a composite sector which is globally invariant under an SU(4) flavour symmetry that is

spontaneously broken down to Sp(4). As a consequence, the SM Higgs doublet is ac-

companied by a pseudo-scalar singlet ⌘ in order to form a complete representation of the

unbroken flavour symmetry. In the same way, the VLQ multiplets must contain additional

top partners, whose quantum numbers depend on the choice of the Sp(4) representations.

As a concrete example, we consider two multiplets: one transforming as a 5-plet of

Sp(4) and one in the singlet representation. Together they may form a 6-plet of SU(4) [31],

and such a top partner easily arises as a “chimera baryon” 7 in underlying models with two

species of fermions [20, 21]. Under the SU(2)L⇥U(1)Y symmetry, the 5-plet decomposes as

27/6+21/6+12/3. It thus contains an additional exotic doublet and a singlet together with

the SU(2)L doublet Q of Eq. (3.1). The Sp(4) singlet representation, having hypercharge

2/3, is trivially identified with the singlet S that couples linearly to the right-handed top.

The various top partners are labelled as follows:

5-plet !

 
X5/3

X2/3

!
,

 
T

B

!
, eT5 ; singlet ! eT1 . (3.10)

We then introduce a linear mixing of the left-handed top (and bottom) with the doublet

contained in the 5-plet and of the right-handed top with the singlet: they are the sources of

PC, and their e↵ect can be introduced in the e↵ective Lagrangian in the standard way [7].

In this work, we will follow the same procedure and notations as in Ref. [32] to obtain the

mass matrices associated to the top partners and the elementary fermions. As we study

the couplings to the pNGBs other than the Higgs doublet, we will keep them explicitly in

the mass matrix. For the charge 2/3 fermions, in the basis  t = {t, T,X2/3, eT1, eT5}, we

obtain the following matrix:

 ̄tR

0

BBBBBBB@

0 �
y5Rp

2
ei⇠5

a
fa fs✓ �

y5Rp
2
ei⇠5

a
fa fs✓ y1Re

i⇠1
a
fa fc✓ iy5Rc✓⌘

y5Le
i⇠5

a
fa fc2

✓/2 M5 0 0 0

�y5Le
i⇠5

a
fa fs2

✓/2 0 M5 0 0

�
y1Lp

2
ei⇠1

a
fa fs✓ 0 0 M1 0

�iy5Lp
2
s✓⌘ 0 0 0 M5

1

CCCCCCCA

 tL , (3.11)

7
The name “chimera baryon” was first coined in Ref. [103].
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The “mass matrix” (pNGB interactions, expanded to leading order in  
sθ=v/f) reads in the basis 
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which is substantial as long as sR ⇠ 1.
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Diagonalizing the mass matrix (and expanding in a and 𝜂) yields couplings 
of top and top partners to the pNGB in terms of the underlying breaking 
parameters  y1,5 (pre-Yukawas) and strong-sector dynamics (M1 , M5 , f , fa ).

Top partner mass mixing and couplings to pNGBs

VLQA


