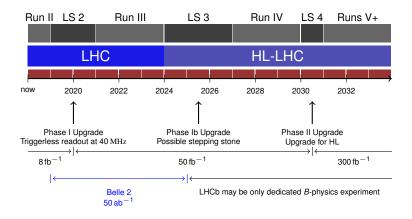
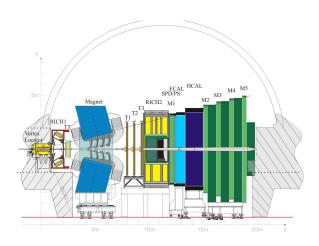
B physics measurements at the HL-LHC HL/HE-LHC Meeting

Daniel Craik on behalf of the LHCb colaboration

Massachusetts Institute of Technology

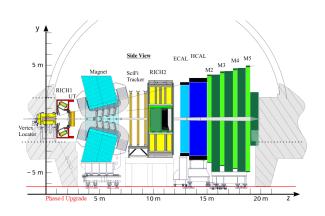
4th April, 2018

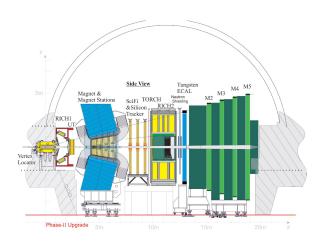



Overview¹

- B physics quite broad
- Will focus on areas most benefited by increased luminosity or LHCb detector changes
- As LHCb upgrade schedule is out of phase with HL-LHC, some parts also relevant to Run III (LHCb upgrade phase I)

04/04/2018

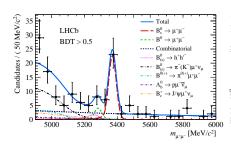

Timeline

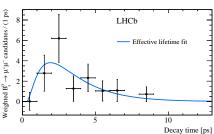


- Instrumentation in the forward region $(2 < \eta < 5)$
- Excellent secondary vertex reconstruction
- Precise tracking before and after magnet
- Good PID separation up to ∼ 100 GeV/c

CERN-LHCC-2012-007

- Triggerless readout at 40 MHz
- New vertex locator
- New tracking (UT, SciFi)

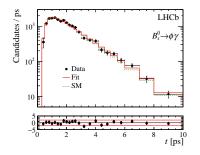

- Tracking in magnet
- ECAL upgrade
- TORCH for PID or ToF
- Replace HCAL with shielding
- Some changes could happen as part of phase lb


Rare decays

- Rare SM processes sensitive to new physics contributions
- Typically limited by statistics
- Clear physics case for increased luminosity

Rare decays: $B^0_{(s)} \rightarrow \mu^+ \mu^-$

- Loop mediated and helicity suppressed
- Leptonic final state allows for precise SM predictions
- Sensitive probe for new physics e.g. extended Higgs sector
- B_s^0 branching ratio observed to be consistent with SM with 23 % precision
- B⁰ decay remains unobserved

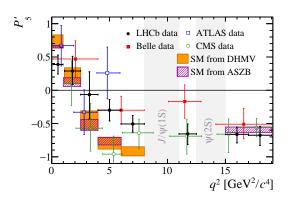


Rare decays: $B^0_{(s)} \rightarrow \mu^+ \mu^-$

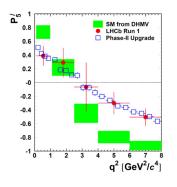
- By end of Run IV expect to see B^0 decay and (if SM) measure ratio B^0/B_s^0 with precision of $\sim 40 \%$
- From HL-LHC expect combined LHCb+CMS precision on ratio of ~ 14 %
- Will also be able to study other quantities such as CP asymmetry for the B^o_s decay
- Require a time-dependent flavour-tagged study
- Important for discriminating between BSM models

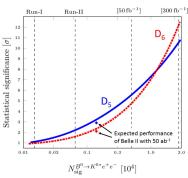
Rare decays: $B_s^0 \rightarrow \phi \gamma$ et al.

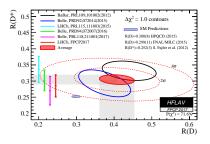
- SM predicts photon in $b \rightarrow s \gamma$ transitions to be predominantly left handed
- LHCb presented first study of photon polarisation in $B_s^0 \to \phi \gamma$ using Run I data...
- ECAL upgrade in phase 2 will offer significant improvement in sensitivity for $b \rightarrow s \gamma$ and $b \rightarrow d \gamma$ processes
- Uncertainties on photon polarisation in $B^0_s \to \phi \gamma$ will be comparable to those on SM predictions for first time


Rare decays: $B_s^0 o \phi \gamma$ et al.

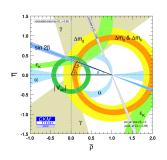
- Will also be possible to study radiative decays of b-baryons
- Additional measurements provide complimentary information

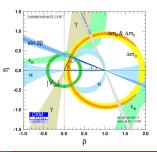

Rare decays: $\mathbf{b} \rightarrow \mathbf{s}\ell^+\ell^-$ and $\mathbf{b} \rightarrow \mathbf{d}\ell^+\ell^-$

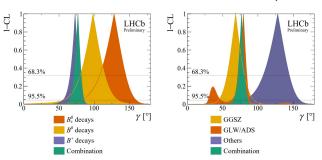

- FCNC processes promising for new physics
- Analyses of $B^+ \to K^+ \ell^+ \ell^-$ and $B^0 \to K^{*0} \ell^+ \ell^-$ already hint at lepton non-universality
- $K^*\mu^+\mu^-$ Angular variables also show hints at new physics


Rare decays: $b \rightarrow s\ell^+\ell^-$ and $b \rightarrow d\ell^+\ell^-$

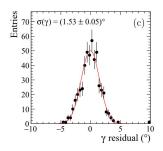
- Significant improvements in precision for angular quantities and $\mu-e$ asymmetry ratios in HL-LHC era
- Angular studies of B_s⁰ and b-baryon decays should also become possible
- Measuring additional quantities will lead to a robust global test of SM and discriminate between NP models

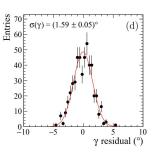



Lepton universality: ${m b} ightarrow {m c} \ell^- u_\ell$

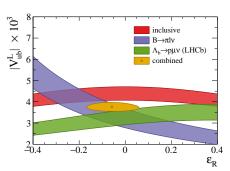

- Lepton universality also tested in semi-leptonic decays
- Measurements of $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ give one of the most significant hints of new physics to date
- During HL-LHC era, LHCb should be able to test both $\tau-\mu$ and $\mu-e$ universality in $b\to c\ell^-\nu_\ell$ decays to %-level precision
- Larger datasets will allow precise LFU tests with the full suite of b-hadrons
- Measure angular and kinematic observables, which are currently out of reach

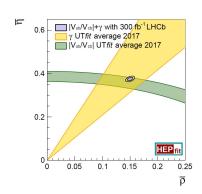
- LHC era has seen marked improvements in key measurements (top→bottom)
- But deviations from the CKM quark-mixing mechanism continue to elude detection
- Uncertainties on "tree" quantities still give room for new physics in loops
- Key goal to improve precision on γ and $|V_{ub}|$
- Continue to improve other key measurements such as ϕ_s , Δm_s and Δm_d




- Least well measured angle of the CKM Unitarity Triangle
- Can be determined at "tree"-level to reduce new physics "loop" contributions
- ullet Current LHCb average has precision of $\sim 5\,\%$
- Results dominated by time-independent $B \rightarrow DX$ measurements
- Expect sub-degree uncertainty on LHCb combined result by the end of Run IV
- Larger datasets also allow new methods to be exploited...

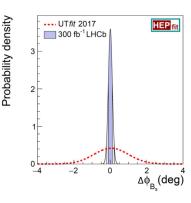
- One such method utilises subsequent three-body decays $B^0 \to DK^+\pi^-$. $D \to K^0\pi^+\pi^-$
- This "double-Dalitz" method benefits from a larger value of r_B relative to $B^+ \to DK^+$ without the need for hadronic parameters as in $B^0 \to DK^{*0}$
- ullet Aided by interference of b o c-only D^{*-} contributions
- Can be performed in bins of both Dalitz plots to avoid model uncertainties
- Coefficients of the D Dalitz plot may be taken from independent CLEO and BES results as with the GGSZ method


- Additional D decays may be included as additional bins in the D phasespace with appropriate choices of coefficients
- Expect degree-level precision on γ after Run IV
- Plots show precision after Run IV (left) from using $K_s^0\pi^+\pi^-$, $K^-\pi^+$, K^+K^- , $\pi^+\pi^-$ and $K^+\pi^-$ decays and (right) precision if partially reconstructed B_c^0 backgrounds preclude the use of DCS $K^+\pi^-$



CKM measurements: $|V_{ub}|$

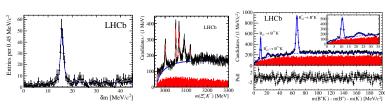
- LHCb uniquely able to measure $|V_{ub}|$ in exclusive B_s^0 , B_c^+ and b-baryon decays
- Measurements from different decay modes have different hadronic uncertainties and produce differently shaped contours in the phasespace
- Λ_b^0 measurement has significantly reduced the required right-handed component in the combined result


CKM measurements: γ and $| extbf{\emph{V}}_{ extbf{\emph{ub}}}|$

- Precision on γ expected to be improved to \sim 0.4° following phase 2 upgrade
- Multiple independent degree-level measurements
- Improved neutral reconstruction in modes such as $D^0 \rightarrow \pi^+\pi^-\pi^0$ may boost this further
- |V_{ub}| decay-rate measurements should be more precise than lattice for all channels
- Measurements from a wider range of b-hadrons and decays
- HL-LHC era results for γ and $|V_{ub}|$ will significantly reduce uncertainty on the UT apex position at "tree" level

CKM measurements: ϕ_s

- Large $B_s^0 o J/\psi \, \phi$ and $B_s^0 o \phi \phi$ datasets would allow for ultra-precise measurements of ϕ_s
- PV association rate can be maintained at the percent level, despite the ~ 50 pileup interactions, by exploiting fast timing technologies
 See Matt Rudolph's talk on detector challenges tomorrow afternoon
- Precision expected to reach 9 mrad after Run IV and \sim 2 mrad in HL-LHC era



b-baryons

- LHC provides a unique environment to study b-baryons
- Many new states and decays observed
- First evidence of CP violation in Λ_b^0 decays
- Larger dataset will also open up new opportunities
- Extend studies to Ω_b and doubly-heavy baryons
- Short-lived doubly-heavy baryons will benefit from improved vertexing
- High multiplicity decays will benefit from low momentum tracking

B spectroscopy

- Spectroscopy of both conventional and exotic states has been an unexpected triumph of the LHCb physics programme
- Larger samples allow precision probes of the nature of exotic states such as X(3872) and the hidden-charm pentaquarks
- New ECAL will help searches for photonic decays of exotic states
- Lower momentum PID will help to access corners of the phasespace
- Multibody decays of Ω_b and Ξ_b excellent environments to further study excited c- and b-baryon states and determine J^P assignments

04/04/2018

Summary

- A rich B-physics programme awaits us in the HL-LHC era
- Many analyses will benefit from larger datasets and improvements to the LHCb sub-detectors
- Rare SM-processes will continue to offer probes of new physics
- Ultra-precision tests of CKM quantities
- Unique large b-baryon datasets will continue to provide new insights