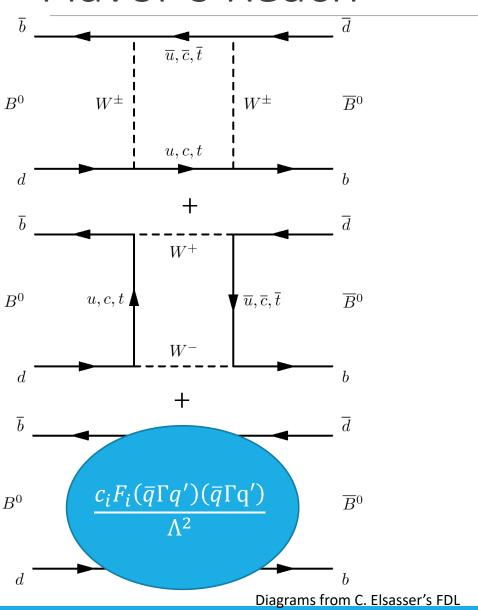
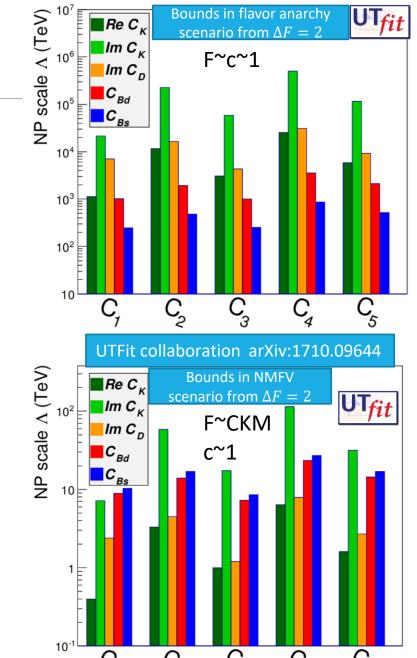
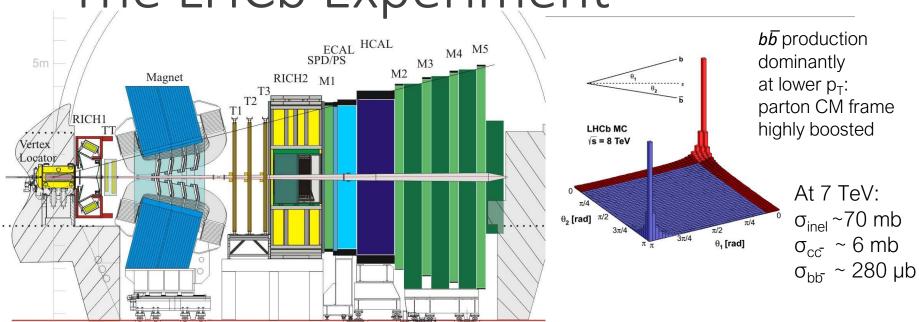


FLAVOR OBSERVABLES AT HE/HL LHC IN VIEW OF ANOMALIES

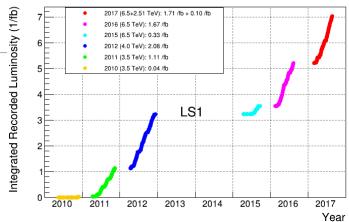
HL/HE LHC MEETING FERMILAB

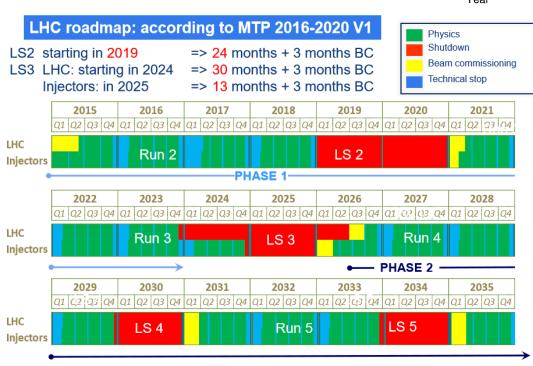

APRIL 5, 2018


BRIAN HAMILTON (UNIVERSITY OF MARYLAND)
ON BEHALF OF THE LHCb COLLABORATION



Flavor's Reach


The LHCb Experiment



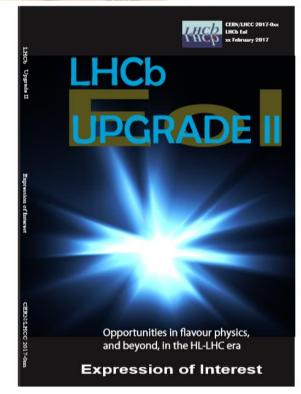
- Focus on forward direction to exploit highly-boosted b quark production in multi-TeV collisions: cover 27% (25%) of (pair) production while instrumenting < 3% of the solid angle (value!)
- •Single arm spectrometer optimized for beauty and charm physics at large η:
 - Trigger: ~90% efficient for dimuon channels, ~30% for all-hadronic
 - $^{\circ}$ Tracking: $\sigma_{\rm p}/{\rm p}\sim 0.4\%-0.6\%$ (p from 5 GeV to 100 GeV), $\sigma_{IP}=(15~+29/p_T {\rm [GeV]}~)\mu{\rm m}$
 - Vertexing: $\sigma_{\tau} \sim 45 \text{ fs for B}_{s} \rightarrow J/\psi \phi$
 - PID: 97% μ ID for 1-3% π -> μ misID, 95% K ID for 5% π \rightarrow K misID

LHCb in the HL-LHC Era

- LHCb is on target to hit ~ 8/fb by LS2
 - Goal: increase dataset by an order of magnitude (50/fb) over runs 3&4
 - Run 4 concurrent with HL-LHC running of CMS & ATLAS
 - Key ingredients:
 - 40 MHz readout plus allsoftware trigger
 - Online detector alignment and calibration for offlinequality reco in trigger proven in Run2
 - Improved segmentation; pixel vertex detector

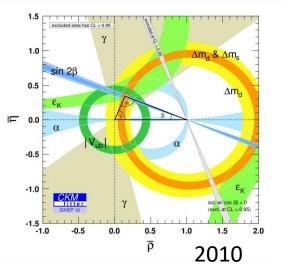
Frederick Bordry

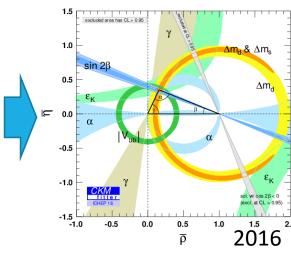
LHCb Upgrade Phase 2

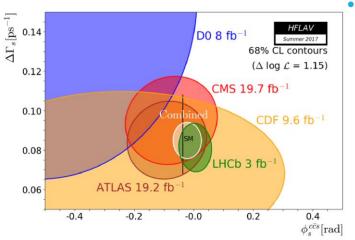

- •HL-LHC upgrades can be exploited at point 8 by allowing LHCb to run at 10^{34} without disrupting high PT experiments
- Machine potential:
 - $^{\circ}$ HL-LHC can run point 8 at 2 \times 10 $^{34}/cm^2s$ with negligible lumi impact for CMS and ATLAS
 - Total Point 8 integrated luminosity limited by radiation hardness of optics to ~ 300/fb

- LHCb must be re-upgraded and re-optimized to retain present performance at a pileup of 50
 - Requires further improvement in segmentation, improved pixel VELO with O(200ps) timing

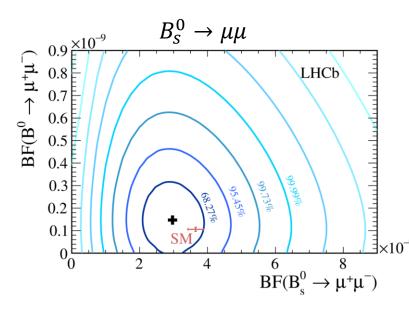
TURN IT UP TO 2 x 10³⁴

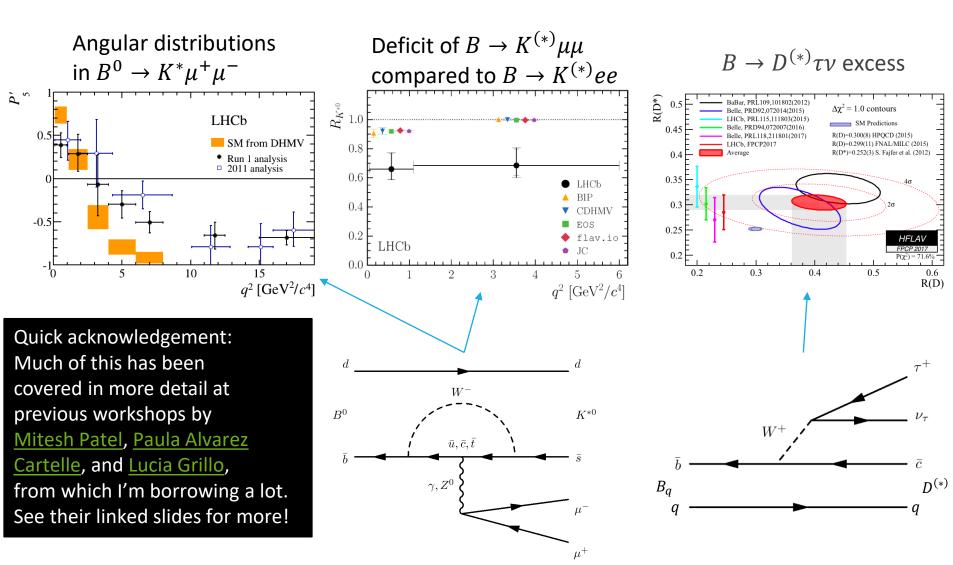



G. Wilkinson Theatre of Dreams: Beyond the LHCb Phase 1 Upgrade

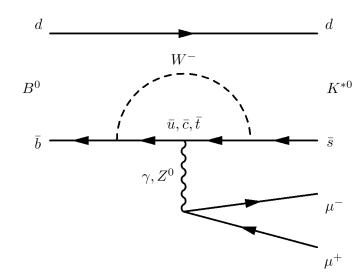


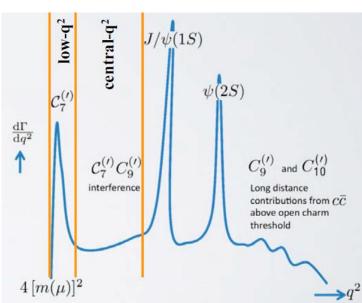
Impact of flavor at LHC


•CKM uncertainties steadily shrinking – huge impact on knowledge of γ



• B_s^0 mixing parameters and NP contributions to becoming steadily more constrained, plus competitive contributions to B^0 mixing parameters

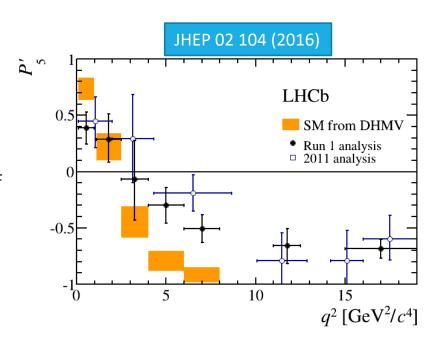

B hadron anomalies

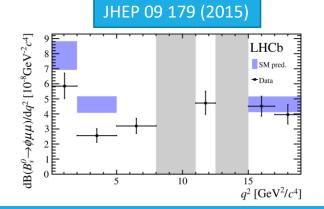


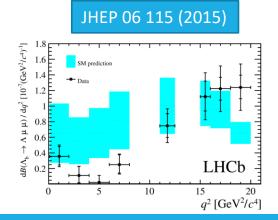
Diagrams from C. Elsasser's FDL

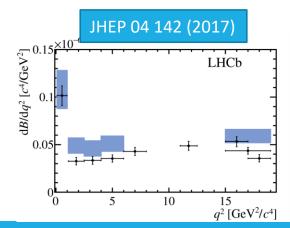
Electroweak Penguin Decays

- Powerful testbed of the electroweak interaction
 - All major SM EW players appearing in a FCNC loop
 - New particles connected to EWSB can introduce q^2 or angle-dependent interference
 - $q^2 \equiv (p_{\ell^+} + p_{\ell^-})^2$
- Excellent targets for both LHCb & upgrade
 - Dilepton in final state = efficient trigger in crowded events
 - Rich phenomenology of observables
 - SM calculations become unreliable near $m(\ell\ell) = m(J/\psi), m(\psi(2S))$
 - ($b \rightarrow c\bar{c}s$ amplitudes, $c\bar{c}$ vacuum polarization, long distance effects...)
 - Low q^2 preferred


FCNC Anomalies

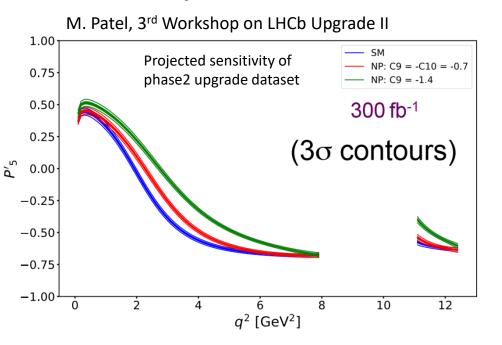

- Run1 dataset: intriguing but inconclusive deviations, especially in angular observables
- LFU violating observables

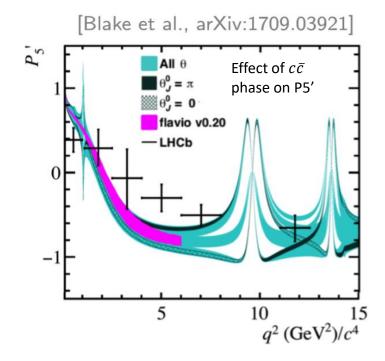

$$R_{K^{(*)}} \equiv \frac{\mathcal{B}(B \to K^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{(*)}e^{+}e^{-})} \stackrel{SM}{\Longrightarrow} 1 \pm \mathcal{O}(10^{-3})$$

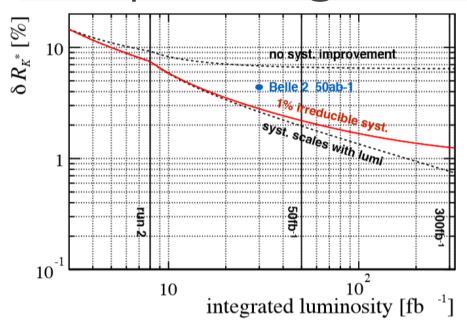

- Clean observables, but limited by statistics of e^+e^- modes at LHCb
- LHCb:

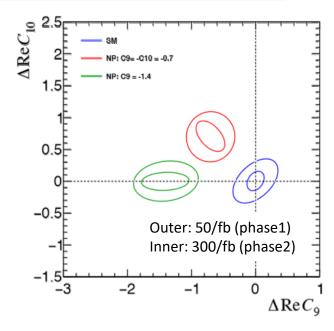
$$R_{K^*}(low q^2) = 0.66^{+0.11}_{-0.07} \pm 0.03$$

 $R_{K^*}(central q^2) = 0.69^{+0.11}_{-0.07} \pm 0.05$
 $R_{K, q^2 \le 6 \text{GeV}^2} = 0.745^{+0.090}_{-0.074} \pm 0.036$



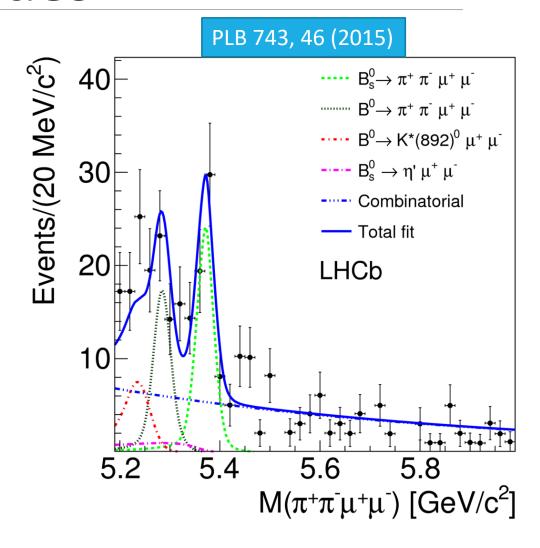


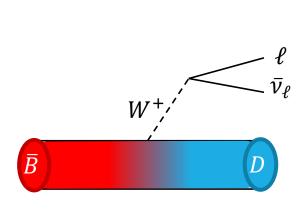

Prospects for Differential Observables

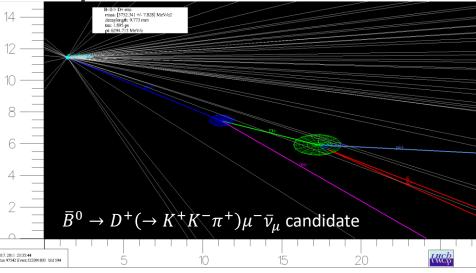


- •50 (or 300)/fb will allow for extremely precise differential measurements
- •With enough related data, can directly fit for parameters in models of hadronic form-factors
 - Can also potentially fit for effects of $c\bar{c}$ resonances directly from the data (with an appropriate model)
- •Requires muon system performance similar to present detector to fully exploit in spite of busier events and larger radiation backgrounds

LFU plus angular observables

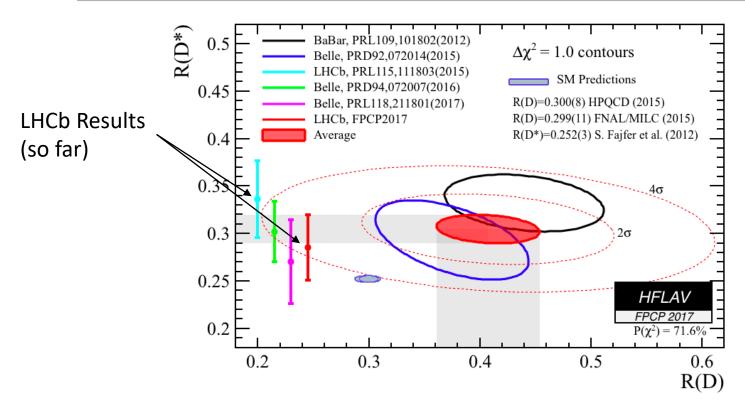



- Powerful idea going forward will be measuring LFU-violating differences in angular observables
 - Best of both worlds, potentially a very powerful probe to characterize what other observables may be presently hinting at
- •Will require improvements to LHCb ECAL for Phase-II to boost e^\pm performance and bremsstrahlung recovery


New Possibilities

- • $b \rightarrow d\ell\ell$
 - $B_S^0 \to \overline{K}^{*0} \mu \mu$ in phase 2 at similar statistics similar to current measurements in B^0 decay
 - $B^0 \to \rho^0 \mu\mu$ requires flavor tag, careful treatment of $\pi\pi$ resonances
 - Flavor tagging expected to be limiting factor in statistics here, but contrarywise small improvements in FT can potentially dramatically boost sensitivity
 - LFU tests with $B \to \pi \ell \ell$
- •Sum of exclusives $b \to X_s \ell \ell$ also interesting with enough statistics?

Semileptonic B decays

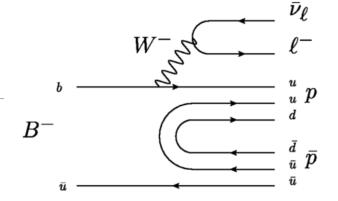


- •"Beta decay" of B hadrons signature is lepton (μ or e (or τ !)) , recoiling hadronic system, and missing momentum
- Theoretically well-understood in the SM
 - No QCD interaction between the lepton-neutrino system and the recoiling hadron(s)
 - Nonperturbative hadronic matrix element can be parameterized and fit in data/lattice
- Main LFU observable:

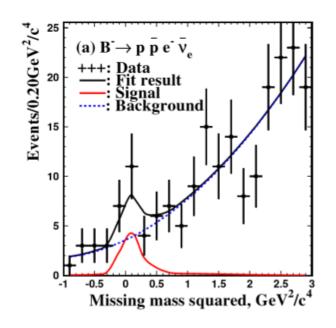
$$R(D^{(*)}) \equiv \frac{\mathcal{B}(\bar{B}^0 \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{(*)}\mu^-\bar{\nu}_{\ell})} = \begin{cases} D^* \to 0.252(3) \text{ [PRD 85 094025 (2012)] (CLN)} \\ D \to 0.300(8) \text{ [EPJ C77 112 (2017)](Lattice/FLAG)} \end{cases}$$

$R(D^{(*)})$ World Average

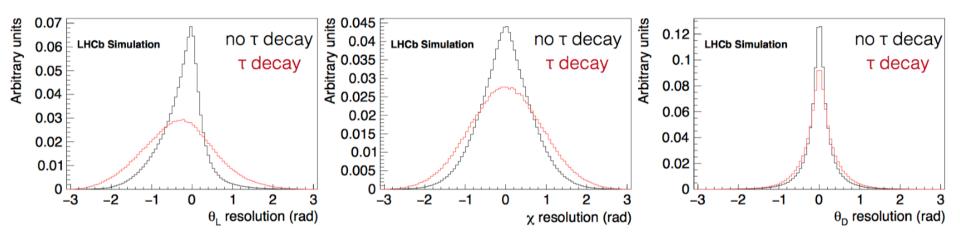
- •With new LHCb result, deviation of world average from SM remains at about 4σ
- •Preferred NP models look like W' or Leptoquarks, and suggest complimentary searches in $B \to K^{(*)} \nu \bar{\nu}$ and $B \to K^* \mu \tau$
- •Highest experimental priority is improved measurements only one single result over 3σ (BaBar), must be cautious with judicious averaging


LFU Ratio prospects

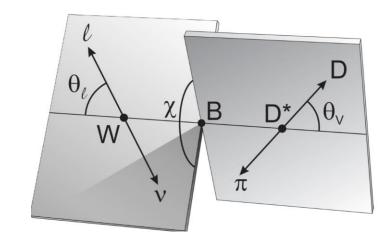
- •General prospects for increasing precision of core observables $(R(X_c))$ are relatively well-established
 - Ultimate sensitivity depends on what systematics become limiting
 - Large datasets -> large control samples -> most systematics can be reduced
- Right: projections if limiting systematics become combinatorial background shapes, PID efficiencies, data/MC corrections
- Absolutely crucial that computing keep up with data (need simulation ~4x data to keep up)
 - Raw power/architecture improvements?
 - Improved FastMC? (systematics?)


$b \rightarrow u \tau v$

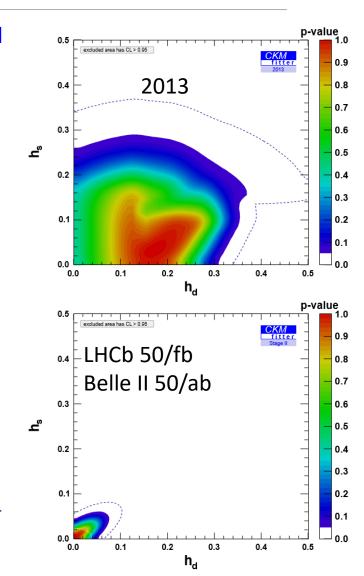
- $b \rightarrow u$ semileptonics are challenging due to very large combinatoric backgrounds
 - Low daughter multiplicity, no tertiary vertex
 - One handle: rarer X_u systems (p, K instead of π)
 - Example: Existing LHCb result on $|V_{ub}|$ in $\Lambda_b^0 \to p\mu\nu$ is already systematics limited with just Run1
 - External inputs dominate form factors, $\Lambda_c^+ \to pK\pi$
- •Probably the most promising target: $B^- \to p\bar{p}\tau\nu$
 - Expect O(1000) normalization in first search for this mode at LHCb, by Run5 could have similar stats to 2015 LHCb R(D*) measurement
 - Many challenging partially reconstructed bkgds



Belle - PRD 89, 011101 (2014)


$$\mathcal{B}(B^- \to p\bar{p}\mu^-\bar{\nu}_{\mu}) = (3.1^{+3.1}_{-2.4} \pm 0.7) \times 10^{-6}$$

Angular observables



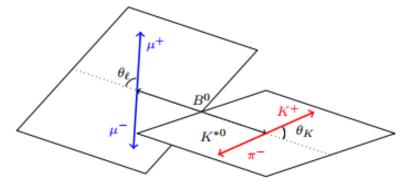
- •With very high statistics more handles become available for differential measurements in angles or other variables
 - Can nail down spin structure of NP contributions
 - Also useful for model-independent SM characterization
- Resolutions are wide unfolding (or forward-folding BSM models) and very high statistics is a must
 - Tools (HAMMER) and workflows underway to reweight detector and reconstruction-folded MC to arbitrary model (plugins provided by theorist) – potentially powerful paradigm

Conclusion

- Broad picture: Next decade will see a huge step forward for flavor datasets and associated HEP instrumentation, with a possible second large step immediately afterwards
 - NP contributions to, e.g., B mixing can be pushed to 1% level, probing O(20 TeV) scales for tree-level NP
- Current B physics anomalies present an intriguing path for further exploration
 - LHCb upgrade datasets will be able to push the core observables to new levels of sensitivity as well as cover a host of complimentary ones
 - Many of these complementary observables are good discovery tools in their own right!
 - Statistics in both signal and associated control samples are key to this program
 - Vital to keep current detector performance at higher pileup to fully exploit this data

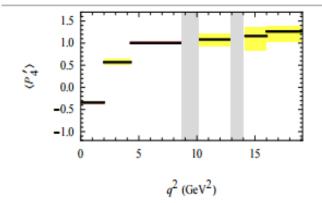
Backups

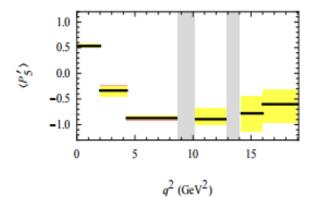
Quark flavor, CKM, and b-physics

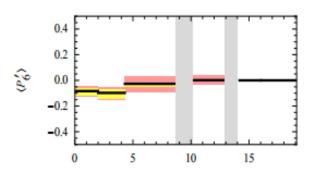

- •V_{CKM} hierarchical & nearly diagonal
 - Transitions mixing different generations suppressed
 - 3rd generation especially "isolated"
- •-> Suppression of all tree-level b quark decay amplitudes
 - |Vcb|~0.04
 - Makes B physics quite sensitive to NP generically misaligned with CKM
 - Also leads to long b quark lifetime: $c\tau_B \sim 400 \mu m!$ (= about 2x charm lifetime)

Quarks spin =1/2		
Flavor	Approx. Mass GeV/c ²	Electric charge
u up	0.002	2/3
d down	0.005	-1/3
C charm	1.3	2/3
S strange	0.1	-1/3
t top	173	2/3
b bottom	4.2	-1/3

$$\begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} d & d & d \\ d & d & d \\ d & d & d \end{pmatrix}$$


K*μμ Angular Distribution


\boldsymbol{j}	I_j	$ f_j $
1s	$\frac{3}{4}\left[\mathcal{A}_{\ }^{L} ^{2}+ \mathcal{A}_{\perp}^{L} ^{2}+ \mathcal{A}_{\ }^{R} ^{2}+ \mathcal{A}_{\perp}^{R} ^{2}\right]$	$\sin^2 \theta_K$
1c	$ \mathcal{A}_{0}^{\mathrm{L}} ^{2} + \mathcal{A}_{0}^{\mathrm{R}} ^{2}$	$\cos^2 \theta_K$
2s	$rac{1}{4}\left[\mathcal{A}_{\parallel}^{\mathrm{L}} ^2+ \mathcal{A}_{\perp}^{\mathrm{L}} ^2+ \mathcal{A}_{\parallel}^{\mathrm{R}} ^2+ \mathcal{A}_{\perp}^{\mathrm{R}} ^2 ight]$	$\sin^2 \theta_K \cos 2\theta_\ell$
2c	$- \mathcal{A}_{0}^{L} ^{2}- \mathcal{A}_{0}^{R} ^{2}$	$\cos^2 \theta_K \cos 2\theta_\ell$
3	$\frac{1}{2} \left[\mathcal{A}_{\perp}^{\mathrm{L}} ^2 - \mathcal{A}_{\parallel}^{\mathrm{L}} ^2 + \mathcal{A}_{\perp}^{\mathrm{R}} ^2 - \mathcal{A}_{\parallel}^{\mathrm{R}} ^2 \right]$	$\sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi$
4	$\sqrt{\frac{1}{2}}\mathrm{Re}(\mathcal{A}_{0}^{\mathrm{L}}\mathcal{A}_{\parallel}^{\mathrm{L}*}+\mathcal{A}_{0}^{\mathrm{R}}\mathcal{A}_{\parallel}^{\mathrm{R}*})$	$\sin 2\theta_K \sin 2\theta_\ell \cos \phi$
5	$\sqrt{2}$ Re $(\mathcal{A}_0^{\mathrm{L}}\mathcal{A}_{\perp}^{\mathrm{L}*} - \mathcal{A}_0^{\mathrm{R}}\mathcal{A}_{\perp}^{\mathrm{R}*})$	$\sin 2\theta_K \sin \theta_\ell \cos \phi$
6s	$2\operatorname{Re}(\mathcal{A}_{\parallel}^{\operatorname{L}}\mathcal{A}_{\perp}^{\operatorname{L*}}-\mathcal{A}_{\parallel}^{\operatorname{R}}\mathcal{A}_{\perp}^{\operatorname{R*}})$	$\sin^2 \theta_K \cos \theta_\ell$
7	$\sqrt{2} \operatorname{Im}(A_0^{L} A_{\parallel}^{L*} - A_0^{R} A_{\parallel}^{R*})$	$\sin 2\theta_K \sin \theta_\ell \sin \phi$
8	$\sqrt{rac{1}{2}} \mathrm{Im} (\mathcal{A}_0^{\mathrm{L}} \mathcal{A}_\perp^{\mathrm{L}*} + \mathcal{A}_0^{\mathrm{R}} \mathcal{A}_\perp^{\mathrm{R}*})$	$\sin 2\theta_K \sin 2\theta_\ell \sin \phi$
9	$\operatorname{Im}(\mathcal{A}_{\parallel}^{\operatorname{L*}}\mathcal{A}_{\perp}^{\operatorname{L}}+\mathcal{A}_{\parallel}^{\operatorname{R*}}\mathcal{A}_{\perp}^{\operatorname{R}})$	$\sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi$
10	$\frac{1}{3} \left[\mathcal{A}_{S}^{L} ^{2} + \mathcal{A}_{S}^{R} ^{2} \right]$	1
11	$\sqrt{\frac{4}{3}}\mathrm{Re}(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}}\mathcal{A}_{0}^{\mathrm{L}*}+\mathcal{A}_{\mathrm{S}}^{\mathrm{R}}\mathcal{A}_{0}^{\mathrm{R}*})$	$\cos \theta_K$
12	$-\frac{1}{3}\left[\left \mathcal{A}_{\mathrm{S}}^{\mathrm{L}}\right ^{2}+\left \mathcal{A}_{\mathrm{S}}^{\mathrm{R}}\right ^{2}\right]$	$\cos 2\theta_{\ell}$
13	$-\sqrt{\frac{4}{3}}\mathrm{Re}(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}}\mathcal{A}_{0}^{\mathrm{L*}}+\mathcal{A}_{\mathrm{S}}^{\mathrm{R}}\mathcal{A}_{0}^{\mathrm{R*}})$	$\cos \theta_K \cos 2\theta_\ell$
14	$\sqrt{\frac{2}{3}}\mathrm{Re}(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}}\mathcal{A}_{\parallel}^{\mathrm{L}*}+\mathcal{A}_{\mathrm{S}}^{\mathrm{R}}\mathcal{A}_{\parallel}^{\mathrm{R}*})$	$\sin \theta_K \sin 2\theta_\ell \cos \phi$
15	$\sqrt{\frac{8}{3}} \operatorname{Re}(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}} \mathcal{A}_{\perp}^{\mathrm{L}*} - \mathcal{A}_{\mathrm{S}}^{\mathrm{R}} \mathcal{A}_{\perp}^{\mathrm{R}*})$	$\sin \theta_K \sin \theta_\ell \cos \phi$
16	$\sqrt{\frac{8}{3}} \operatorname{Im}(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}}\mathcal{A}_{\parallel}^{\mathrm{L}*} - \mathcal{A}_{\mathrm{S}}^{\mathrm{R}}\mathcal{A}_{\perp}^{\mathrm{R}*})$	$\sin \theta_K \sin \theta_\ell \sin \phi$
17	$\sqrt{rac{2}{3}} \mathrm{Im} (\mathcal{A}_{\mathrm{S}}^{\mathrm{L}} \mathcal{A}_{\perp}^{\mathrm{L}*} + \mathcal{A}_{\mathrm{S}}^{\mathrm{R}} \mathcal{A}_{\perp}^{\mathrm{R}*})$	$\sin \theta_K \sin 2\theta_\ell \sin \phi$



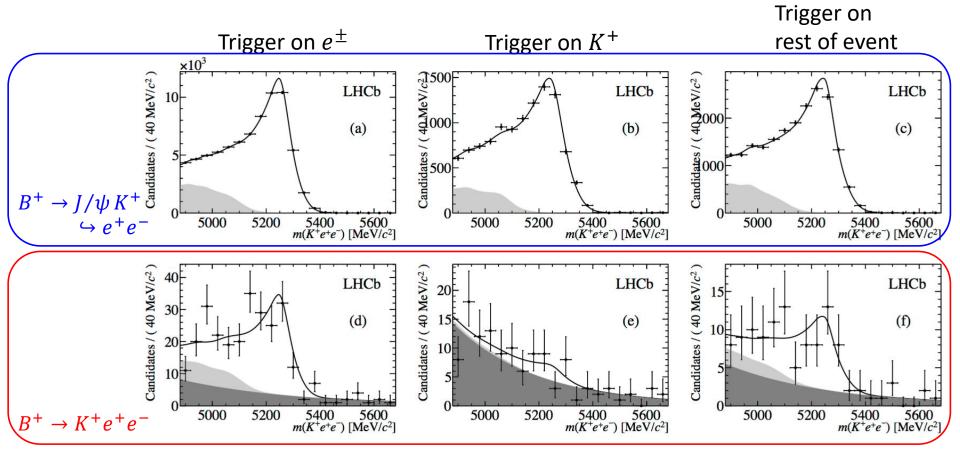
- •Full angular distribution described by 6 amplitudes $A_{0,\parallel,\perp}^{L,R}$ (+2 $A_S^{L,R}$ for S-wave component)
 - In turn these are dependent on C_{7-9} and C'_{7-9}
 - Full angular distribution left
- •Of particular interest are integrated decay rate vs q², forward-backward asymmetry, and particular combinations for which form factors cancel to leading order

Optimized Angular Observables

- Descotes-Genon, Hurth, Matais and Virto introduced a more optimized basis
 - Cancels leading FF uncertainties in theoretical predictions
 - (JHEP, 1305:137, (2013))
- Angular observables given by: (with corresponding CP asymmetry variables given by taking differences in numerators)

$$\langle P_{1}\rangle_{\text{bin}} = \frac{1}{2} \frac{\int_{\text{bin}} dq^{2} [J_{3} + \bar{J}_{3}]}{\int_{\text{bin}} dq^{2} [J_{2s} + \bar{J}_{2s}]} ,$$

$$\langle P_{2}\rangle_{\text{bin}} = \frac{1}{8} \frac{\int_{\text{bin}} dq^{2} [J_{6s} + \bar{J}_{6s}]}{\int_{\text{bin}} dq^{2} [J_{2s} + \bar{J}_{2s}]} ,$$


$$\langle P_{3}\rangle_{\text{bin}} = -\frac{1}{4} \frac{\int_{\text{bin}} dq^{2} [J_{9} + \bar{J}_{9}]}{\int_{\text{bin}} dq^{2} [J_{2s} + \bar{J}_{2s}]} ,$$

$$\langle P'_{4}\rangle_{\text{bin}} = \frac{1}{\mathcal{N}'_{\text{bin}}} \int_{\text{bin}} dq^{2} [J_{4} + \bar{J}_{4}] ,$$

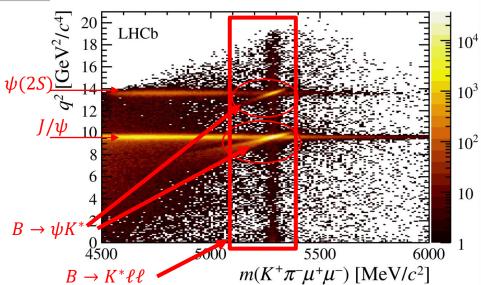
$$\langle P'_{5}\rangle_{\text{bin}} = \frac{1}{2\mathcal{N}'_{\text{bin}}} \int_{\text{bin}} dq^{2} [J_{5} + \bar{J}_{5}] ,$$

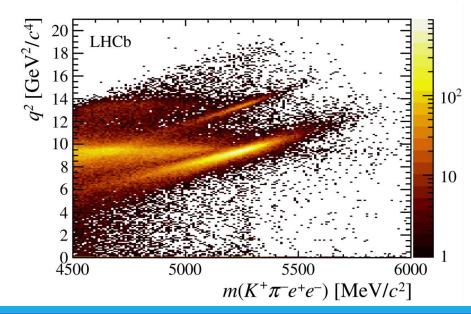
$$\langle P'_{6}\rangle_{\text{bin}} = \frac{-1}{2\mathcal{N}'_{\text{bin}}} \int_{\text{bin}} dq^{2} [J_{7} + \bar{J}_{7}] ,$$

Fitting the electron mode

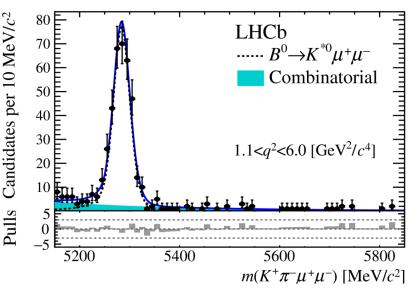
- Mass shape in electron mode is sum of shapes corresponding to one, two, or three recovered photons
 - Fit separately in each of [electron triggered, kaon triggered, other] categories
 - \circ Parameters fixed in signal decays to those obtained in fit to $B^+ o J/\psi \, K^+$

RK* event selection and raw yields

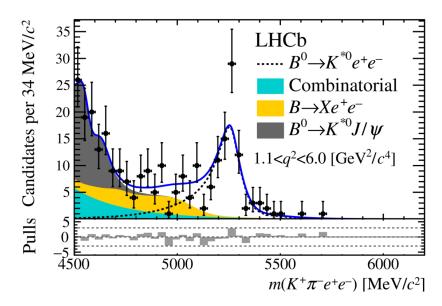

- Main challenge experimentally at LHCb: electron reconstruction
 - Electron momentum resolution is considerably worsened by bremsstrahlung
 - Charged particles at LHCb see $X/X_0 \approx 60\%$ before RICH2, $\approx 30\%$ before magnet
 - Recovery algorithms find the hardest premagnet emissions ($E_T > 75 \text{ MeV}$)
 - Limitations of E_T threshold, unassociated clusters misidentified as brem. and inefficiency of isolation limit resolution
 - Dielectron mass resolution also strongly dependent on trigger path

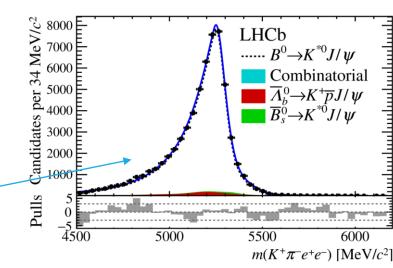

Measure double ratio

$$\frac{\mathcal{B}(B \to K^* \mu \mu)}{\mathcal{B}(B \to J/\psi[\to \mu \mu]K^*)} / \frac{\mathcal{B}(B \to K^* e e)}{\mathcal{B}(B \to J/\psi[\to e e]K^*)}$$

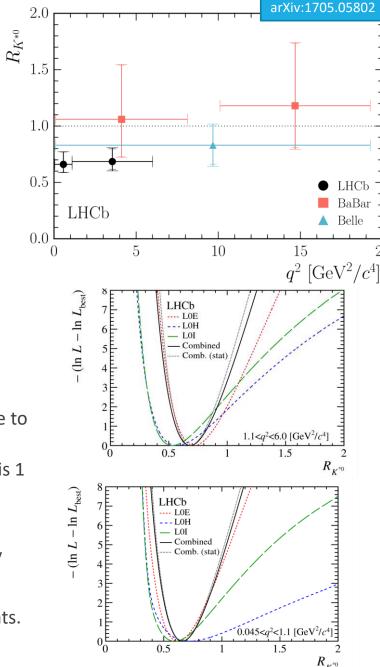

$$= \frac{\mathcal{B}(B \to K^* e e)}{\mathcal{B}(B \to K^* \mu \mu)} / r_{J/\psi}$$

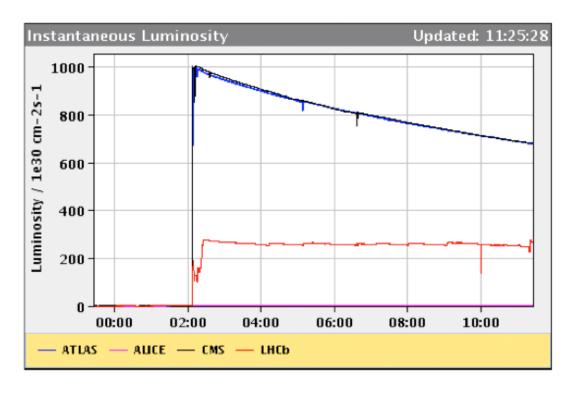
to minimize impact of reconstruction systematics on LFU observables



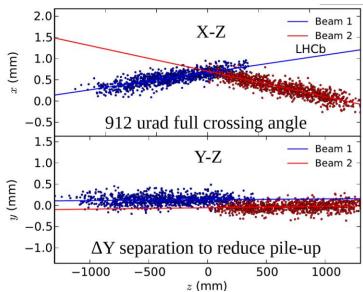


R_{K^*} fit


- Mass shape in electron mode is sum of shapes corresponding to zero, one, or two or more recovered photons
 - Fit separately in each of [electron triggered, kaon triggered, other] categories
 - Parameters fixed in signal decays to those obtained in fit to $B \rightarrow J/\psi \, K^*$



RK* results


- This result:
 - $R_{K^*}(low\ q^2) = 0.66^{+0.11}_{-0.07} \pm 0.03$
 - $2.1 2.3\sigma$ below predictions (~0.92)
 - $R_{K^*}(central\ q^2) = 0.69^{+0.11}_{-0.07} \pm 0.05$
 - $2.4 2.5\sigma$ below predictions (~1.0)
- Previous LHCb result:
 - $R_{K, q^2 < 6 \text{GeV}^2} = 0.745^{+0.090}_{-0.074} \pm 0.036$
- Result cross-checked by studying the *single ratio* $r_{J/\psi}=\frac{\mathcal{B}(B\to J/\psi[\to \mu\mu]K^*)}{\mathcal{B}(B\to J/\psi[\to ee]K^*)}=1.043\pm0.006\pm0.045$
 - Fewer cancellations than double ratio means it is more sensitive to systematic issues with efficiencies and yield extraction
 - Further cross-checks measure double ratio for $\psi(2S) \to \text{result}$ is 1 within 2%(=stat error)
- Consistent with C_9/C_9-C_{10} -type new physics picture preferred by global fits to $b\to s\ell\ell$ data eg
- Currently this is the "poster child" of statistics-limited measurements. Expect fast improvement with Run2!

LHCb Datataking

- •LHCb requirements:
 - Lower peak Lumi (2 -4×10^{32})
 - Stable intra-fill pileup
- LHC machine solution: Lumi levelling scheme at point 8
 - Possible use in high-pt experiments in HL-LHC

