Prospects for charm tagging and the Higgs HL/HE-LHC Meeting

Daniel Craik on behalf of the LHCb colaboration

Massachusetts Institute of Technology

6th April, 2018

Overview

- Observation of a Higgs boson at 125 GeV/c² standout achievement of LHC Run I
- Gauge sector seems to be SM-like
- Less known about fermions
- Thus far, only third-generation decays observed
- $H^0 \rightarrow c\overline{c}$ has largest SM BF of second-generation decays
- $\sim 30 \times$ suppressed *cf.* $b\overline{b}$

$H^0 \rightarrow c\overline{c}$ @ Atlas

- Atlas recently performed a search for $H^0 o c\overline{c}$ produced through Z+H
- Used 36.1 fb⁻¹ of data at 13 TeV
- \bullet Limit set is \sim 100× SM prediction

Higgs searches @ LHCb

Disadvantages

- Lower luminosity
- Smaller acceptance
- Non-hermetic

Advantages

- Low pileup
- Excellent secondary vertex reconstruction
- Complementary coverage

Focus on b, c and τ channels

Higgs searches @ LHCb: $\tau^+\tau^-$

- Limits set on $H^0 \rightarrow \tau^+ \tau^-$ in forward region as a function of Higgs mass
- Analysis used 1 fb⁻¹ of data at 7 TeV
- \bullet au decays to muon, electron and hadronic final states considered
- No requirements on H⁰ production mechanism
 - ullet Trigger on au decays
- Limit \sim 100 \times SM prediction
- Also set limits on $\tan \beta$ in MSSM

- Also studied $b\overline{b}$ and $c\overline{c}$ final states
- Analyses used 2 fb⁻¹ of data at 8 TeV
- Use VH associated production
- Trigger on the vector boson
- Upper limits on Yukawa couplings of $y^b < 7y_{\rm SM}^b$ and $y^c < 80y_{\rm SM}^c$
- How much better can we do after upgrades?

LHCb upgrade timeline

- Triggerless readout at 40 MHz
- New vertex locator
- New tracking (UT, SciFi)

- Tracking in magnet
- ECAL upgrade
- TORCH for PID or ToF
- Replace HCAL with shielding
- Some changes could happen as part of phase lb

Charm tagging @ LHCb

- Charm tagging non-trivial
- Charm has long lifetime (displaced vertex/muon or exclusive D)
- But so does beauty...
- Distinguish using features of SV
- Need to calibrate using data...

Charm tagging @ LHCb

- BDTs developed to tag jets in Run 1 data
- Efficiency determined on flavour-enriched samples
 - e.g. tagged by fully reconstructed (middle) B or (bottom) D decays on "other" jet
- 2D fit to corrected mass and track multiplicity of reconstructed secondary vertices also gives good separation of jet flavours

Charm tagging @ LHCb: future

Run II

- Jet tagging efficiency studies underway on 13 TeV dataset
- Unlike in Run I, these benefit from dedicated calibration samples
- New 13 TeV jet studies to follow

Beyond

- Need to handle pileup
- Displaced vertex tagging will benefit from VELO/tracking upgrades
- Tagging efficiency expected to be maintained or improved

Charm tagging @ LHCb: future

- Run I
- Expectations for Run III, Phase II Upgrade options.
- Perfect detector and perfect with reconstruction efficiency
- Dashed lines have lower χ^2_{IP} requirement
- ullet Requiring a two-body SV limits c-jet efficiency to $\sim 55\,\%$
- Can boost dijet efficiency by only requiring a single jet to pass tight c-tagging requirements

 $H^0 \rightarrow c\overline{c}$ @ LHCb: future

Prospects for upgrade phase 2

- \bullet VH cross-section in LHCb acceptance increases by a factor of ~ 7 from 8 TeV to 14 TeV
- \bullet After 300 fb $^{-1},$ expect to set limit on Yukawa coupling of $\sim7\ensuremath{y_{\mathrm{SM}}^{\text{c}}}$
- With improvements to detector performance and b-c separation, and looser tagging requirements, this could be brought to $\sim 2y_{\rm SM}^c$
- If VBF production can also be utilised, this could yield similar statistics

Summary

- Charm tagging performance at LHCb expected to be maintained or improved in the HL-LHC era
- ullet With modest improvements, SM $H^0
 ightarrow c\overline{c}$ may be within reach
- On the same timescale, LHCb should provide the first observation of $VH(b\overline{b})$ in the forward region