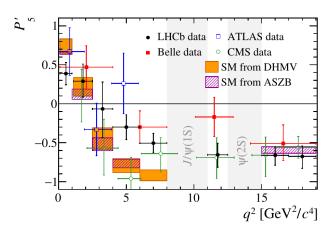

High p_T Implications of $b \to s\ell\ell$ Anomalies

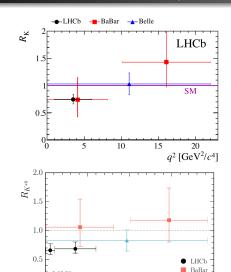
Wolfgang Altmannshofer altmanwg@ucmail.uc.edu


HL/HE LHC Meeting Fermilab, April 4 - 6, 2018

The Anomalies: Branching Ratios

several $b \to s\mu\mu$ branching ratios are consistently 2σ - 3σ below the SM predictions

The Anomalies: Angular Distributions



$\sim 3\sigma$ discrepancy in P_5' between SM predictions

(ASZB = WA, Straub 1411.3161 + Bharucha, Straub, Zwicky 1503.05534) (DHMV = Descotes-Genon, Hofer, Matias, Virto 1510.04239)

and measurements (LHCb collaboration 1512.04442)

The Anomalies: Lepton Universality Ratios

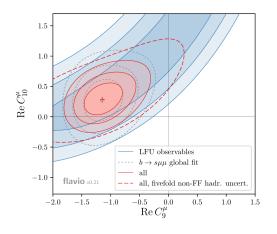
10

$$R_{K^{(*)}} = rac{BR(B
ightarrow K^{(*)} \mu \mu)}{BR(B
ightarrow K^{(*)} ee)}$$

$$R_{K}^{[1,6]} = 0.745^{+0.090}_{-0.074} \pm 0.036$$

$$R_{K^*}^{[0.045,1.1]} = 0.66^{+0.11}_{-0.07} \pm 0.03$$

$$R_{K^*}^{[1.1,6]} = 0.69_{-0.07}^{+0.11} \pm 0.05$$


3 observables deviating by $\sim 2\sigma - 2.5\sigma$ from the SM predictions

LHCb

▲ Belle

 $q^2 \, [\text{GeV}^2/c^4]$

Model Independent New Physics Interpretation

WA, Stangl, Straub 1704.05435
WA, Niehoff, Stangl, Straub 1703.09189
(+ many others ...)

Best description of all anomalies by:

new physics in final states with muons

$$\textit{\textbf{C}}_{9}^{\mu}(\bar{\textbf{s}}\gamma_{\mu}\textit{\textbf{P}}_{\textit{\textbf{L}}}\textit{\textbf{b}})(\bar{\mu}\gamma^{\mu}\mu)$$

SM-like final states with electrons

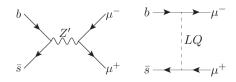
Implications for the New Physics Scale

unitarity bound
$$\frac{4\pi}{\Lambda_{\rm NP}^2}(\bar{s}\gamma_\nu P_L b)(\bar{\mu}\gamma^\nu \mu) \qquad \Lambda_{\rm NP} \simeq 120~{\rm TeV}\times(\textit{C}_9^{\rm NP})^{-1/2}$$
 generic tree
$$\frac{1}{\Lambda_{\rm NP}^2}(\bar{s}\gamma_\nu P_L b)(\bar{\mu}\gamma^\nu \mu) \qquad \Lambda_{\rm NP} \simeq 35~{\rm TeV}\times(\textit{C}_9^{\rm NP})^{-1/2}$$
 MFV tree
$$\frac{1}{\Lambda_{\rm NP}^2} \, V_{tb} \, V_{ts}^* \, (\bar{s}\gamma_\nu P_L b)(\bar{\mu}\gamma^\nu \mu) \qquad \Lambda_{\rm NP} \simeq 7~{\rm TeV}\times(\textit{C}_9^{\rm NP})^{-1/2}$$
 generic loop
$$\frac{1}{\Lambda_{\rm NP}^2} \, \frac{1}{16\pi^2} (\bar{s}\gamma_\nu P_L b)(\bar{\mu}\gamma^\nu \mu) \qquad \Lambda_{\rm NP} \simeq 3~{\rm TeV}\times(\textit{C}_9^{\rm NP})^{-1/2}$$
 MFV loop
$$\frac{1}{\Lambda_{\rm NP}^2} \, \frac{1}{16\pi^2} \, V_{tb} \, V_{ts}^* \, (\bar{s}\gamma_\nu P_L b)(\bar{\mu}\gamma^\nu \mu) \qquad \Lambda_{\rm NP} \simeq 0.6~{\rm TeV}\times(\textit{C}_9^{\rm NP})^{-1/2}$$

The New Physics might or might not be in reach of the HL/HE LHC ...

Searching for the Contact Interaction

even if the new degrees of freedom are not accessible at the LHC, high energy tails of di-lepton spectra are in principle sensitive


operator relevant for the $bs\ell\ell$ anomalies: $\frac{1}{\Lambda_{\rm NP}^2}(\bar{s}\gamma_{\nu}P_{\rm L}b)(\bar{\mu}\gamma^{\nu}P_{\rm L}\mu)$

- currently probed up to scales of 2.5 TeV
- can be probed up to 4 TeV with 3/ab (extracted from Greljo, Marzocca 1704.09015)
- HE LHC will improve sensitivity (but will likely not reach the 35 TeV)

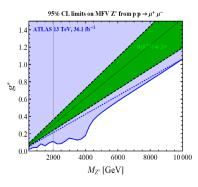
Simplified Models

possible tree level explanations:

- Z' Bosons
- Lepto-Quarks

upper bounds on flavor violating couplings from B_s mixing imply upper bounds on the particle masses

- $m_{Z'} \lesssim g_{\mu} \times 8 \text{TeV}$
- $m_{LQ} \lesssim 20 40 \text{TeV}$ (depending on the lepto-quark representation)


 \rightarrow a weakly coupled Z' is likely in reach of HE LHC

Z' with Minimal Flavor Violation

assume that flavor diagonal and flavor violating couplings are related

$$g_I^{qq}=g_*\;,$$

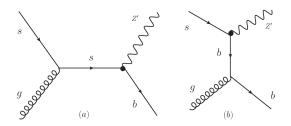
$$g_{\mathsf{L}}^{qq} = g_* \; , \qquad g_{\mathsf{L}}^{bs} = V_{tb}V_{ts}^*g_*$$

already ruled out

by di-muon resonance searches + searches for $qq\mu\mu$ contact interactions

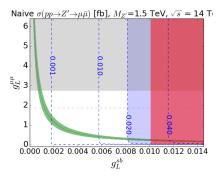
Greljo, Marzocca 1704.09015 also WA, Straub 1411.3161

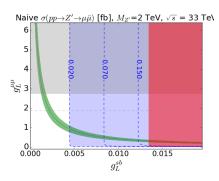
→ couplings to light quarks need to be suppressed


"Minimalistic" Z' Scenario

switch on only couplings that are needed for the $bs\mu\mu$ anomalies (+ those that are dictated by SU(2))

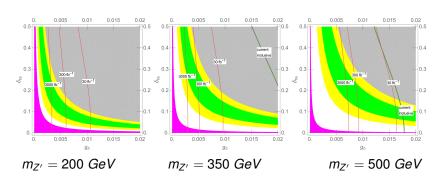
$$g_{\rm L}^{\mu\mu}Z_{\mu}^{\prime}(ar{\mu}\gamma^{\mu}P_{\rm L}\mu)+g_{\rm L}^{\it bs}Z_{\mu}^{\prime}(ar{s}\gamma^{\mu}P_{\rm L}b)+~{
m h.c.}$$


(requires some sophisticated UV flavor story...)


Irreducible Z' signature: $pp \rightarrow bZ' \rightarrow b\mu^+\mu^-$

Sensitivities at HL/HE LHC

green: $R_{K^{(*)}}$ explanation, gray: low scale Landau pole red: B_s mixing constraint, blue: LHC sensitivity


The "minimalistic" setup cannot be fully covered at the HL/HE LHC (3/ab) even for rather light Z' of O(TeV)

Allanach, Gripaios, You 1710.06363; also Chivukula et al. 1706.06575

(caveat: assume absence of "dark" decays)

Sensitivities at HL/HE LHC

sensitivity increases in the presence of a sizable Z'bb coupling

Dalchenko, Dutta, Eusebi, Huang, Kamon, Rathjens 1707.07016 also Kohda, Modak, Soffer 1803.07492

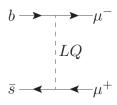
(caveat: assume absence of "dark" decays)

"Minimalistic" Lepto-Quark Scenarios

three possible lepto-quark representations:

$$S_3(\bar{3},3,1/3)$$
 $V_1(3,1,2/3)$ $V_3(3,3,-2/3)$

$$V_1(3,1,2/3)$$


$$V_3(3,3,-2/3)$$

switch on only couplings that are needed for the $bs\mu\mu$ anomalies (+ those that are dictated by SU(2))

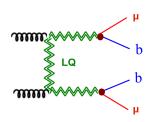
 S_3 example

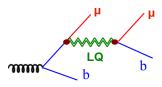
$$\lambda_L^{b\mu}(ar{b}^cP_L\mu)S_3^{4/3} + \lambda_L^{s\mu}(ar{s}^cP_L\mu)S_3^{4/3} + ext{ h.c.}$$

(UV flavor story?)

Irreducible lepto-quark signatures

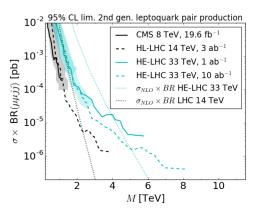
Lepto-quarks are pair produced through QCD interactions


$$pp
ightarrow \mathsf{LQ} \ \mathsf{LQ}
ightarrow j(b) \mu^+ \ j(b) \mu^-$$


(pair production completely fixed by QCD for the scalar LQ, but could be model-dependent for vector LQ)

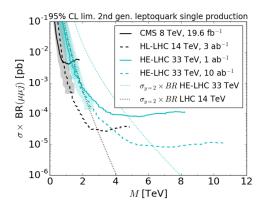
Lepto-quarks can be singly produced through their couplings to quarks/leptons

$$pp
ightarrow LQ \ \mu
ightarrow j(b) \mu^+ \mu^-$$


(single production can be important for heavy LQ)

Sensitivities at the HL/HE LHC

pair production of lepto-quarks



Allanach, Gripaios, You 1710.06363

caveat: dominant lepto-quark decay mode could be "exotic" LQ $\rightarrow \ell + 3j$ (Monteux, Rajaraman 1803.05962)

Sensitivities at the HL/HE LHC

single production can be relevant for heavy lepto-quarks

Allanach, Gripaios, You 1710.06363 also Hiller, Loose, Nisandzic 1801.09399

Summary

- ▶ $b \to s\ell\ell$ anomalies point to a four fermion contact interaction $(\bar{b}\gamma_{\alpha}P_{L}s)(\bar{\mu}\gamma^{\alpha}\mu)$ at a generic scale of \sim 35 TeV
- ightharpoonup Possible tree level explanations from Z' or lepto-quarks
- ▶ weakly coupled Z' are probably light(ish) (≤ several TeV), but could in principle be hidden
- ▶ lepto-quarks are more difficult to hide, but could be very heavy (≥ 10 TeV)
- ▶ irreducible Z' signature: $pp \rightarrow bZ' \rightarrow b\mu^+\mu^-$ (di-muon resonance in association with b-jet)
- ▶ Irreducible lepto-quark signatures: $pp \rightarrow LQ LQ \rightarrow j(b)\mu^+ j(b)\mu^-$ (pair production) $pp \rightarrow LQ \mu \rightarrow j(b)\mu^+\mu^-$ (single production)