Experimental searches at high p_T in view of flavour anomalies (WG3+4, ATLAS+CMS)

Kerstin Hoepfner (RWTH Aachen)

on behalf of the ATLAS and CMS collaborations

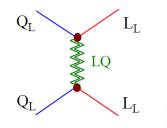
HL/HE - LHC Workshop at FNAL April 4-6 2018

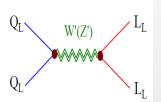
Run / Event 139779 / 4994199

This talk

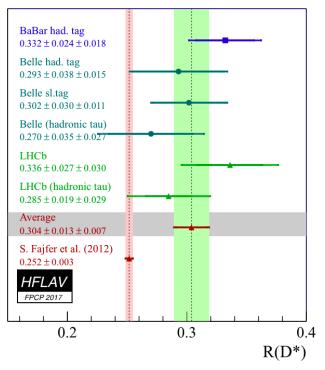
Observed anomalies in B-physics

Complementary searches in other channels

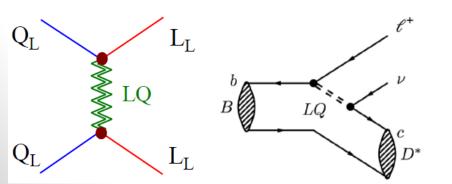

Many Run-2 searches in all final states. Some projections for HL-LHC. So far without dedicated flavor interpretations.

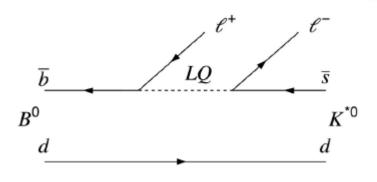

Models interpreting B-physics anomalies favor 3rd generation

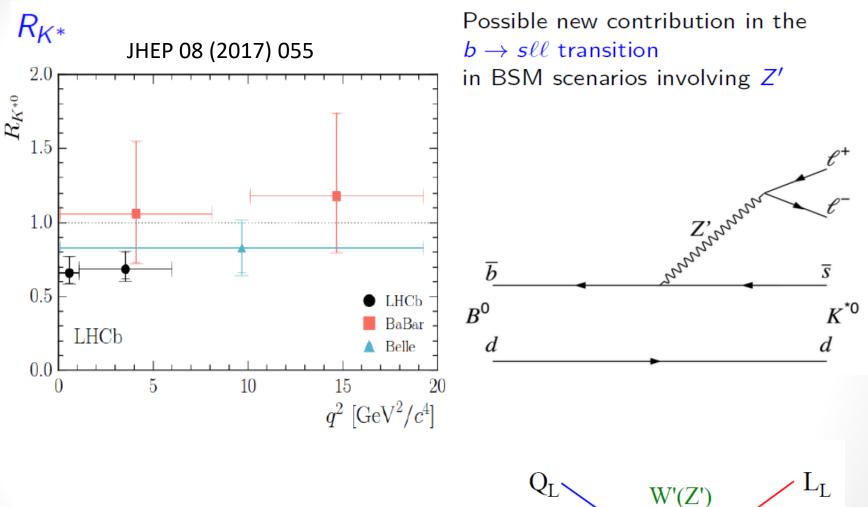
Leptoquarks (LQ) pair and singly produced. LQ3 -> τ + t (ττtt) and τ + b (ττbb).


At TeV singly produced might be dominant.

→ Z' searches in 3rd generation Z'-> $\tau\tau$ and Z'-> tt. → W' searches in 3rd generation, W'->tb and W'-> $\tau\nu$




LQ and B-physics anomalies


Quark level transition $\mathbf{b} \to \mathbf{c}\ell\bar{\nu}$ R_D, R_{D^*} : combined ~ 4σ deviation $R_{D^{(*)}}^{\tau/\ell} = \frac{\Gamma(\bar{B} \to D^{(*)}\tau\bar{\nu})}{\Gamma(\bar{B} \to D^{(*)}\ell\bar{\nu})}$ Quark level transition $\mathbf{b} \to \mathbf{s}\ell\bar{\ell}$ R_K, R_{K^*} : ~ 2.5 σ deviation (LHCb) $R_{K^{(*)}} = \frac{\Gamma(\bar{B} \to \bar{K}^{(*)}\mu^+\mu^-)}{\Gamma(\bar{B} \to \bar{K}^{(*)}e^+e^-)}$ $B^0 \to K^{*0}\mu^+\mu^-$ angular analysis: 3.4 σ deviation (LHCb) (Cli With lower precision BELLE, CMS, ATLAS

Possible explanation are LQ-like mediators. TeV scale and 3rd generation favored. LQ couple to leptons and quarks, with a coupling λ

Z' and B-physics anomalies

4

 L_{L}

Analysis Techniques for HL Studies

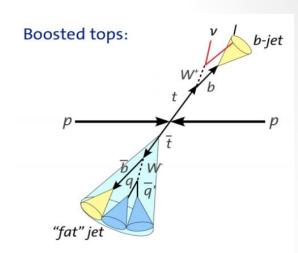
ATLAS

- Generate truth-only 14 TeV event
- Overlay with jets (full sim) from pileup library, <PU> = 140 or 200
- Reconstruct particles from truth+overlay
- Smear their energy and p_T using appropriate smearing functions, incl. Eff for genuine objects and rates from mis-identified objects.

CMS (two types, projections and full analyses)

Projections from a present analysis

- Existing signal and background samples (simulated at 13 TeV) scaled to higher luminosity and sqrt(s)=14 TeV. Different uncertainty scenarios.
- Analysis steps (cuts) from present analyses.


Full analyses with parametrized detector performance

- DELPHES with up-to-date phase-2 detector performance and <PU> = 200
- Analysis steps guided by present analysis. Limited optimization for HL conditions. Cross checks with present analyses.
- Dedicated simulation of signal and bkgr samples

CMS Z´→tt Projection from 2.6/fb to 3/ab

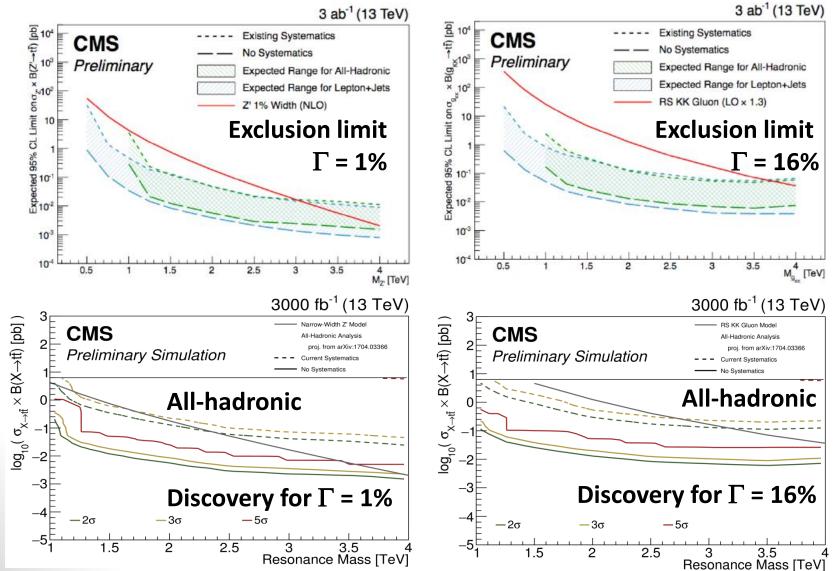
 $Z' \rightarrow$ ttbar studied in two dinstinct channels distinguished by decay of W (from t \rightarrow Wb)

- Semileptonic (I + b-jet + jet + MET)
- All-hadronic channel (jets)
- 12 orthogonal categories

PU=140

Pure projection

- Scale existing Run-2 signal and bkgr expectations to 14 TeV and 3000/fb
- Discriminating variable = m(tt)

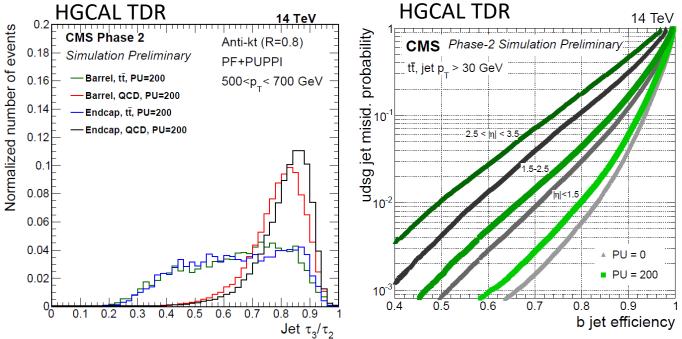

Two scenarios of systematic uncertainties:

- <u>Current Run-2</u> baseline analysis without scaling of uncertainties
 - E.g. Non-top multijet bkgr (dominant bkgr in all-hadronic) derived from data, should improve with luminosity
 - Uncertainties on ttbar simulation (10-20%) is leading. Uncertainties on other xsec's will improve.
 - JES, resolution and lepton ID efficiencies should improve.
- <u>Without any systematics</u>, include only statistical uncertainties = best case

Z´→tt Projected Sensitivity

Two signal models: Narrow resonance (Z') with 1% width

RS KK gluon resonance with width ~16% of mass

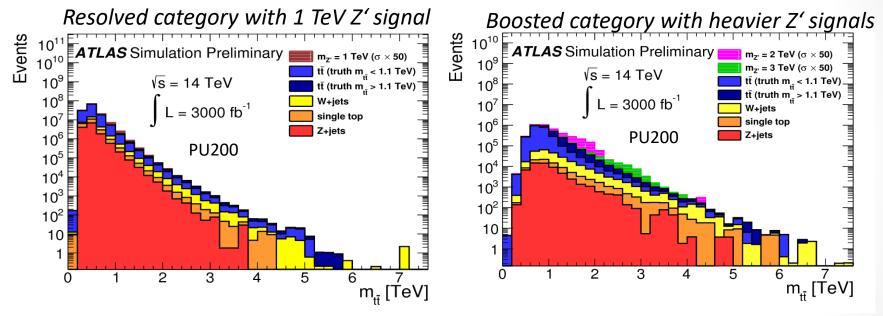

B2G-15-003 Projection in DP-2016/064 and CMS-PAS-FTR-16-005 TeV B2G-15-002, . 13 **Baseline analyses at**

PROJECTION

CMS Plan: Re-do tt Resonances

Plan to redo the Z' projections updating:

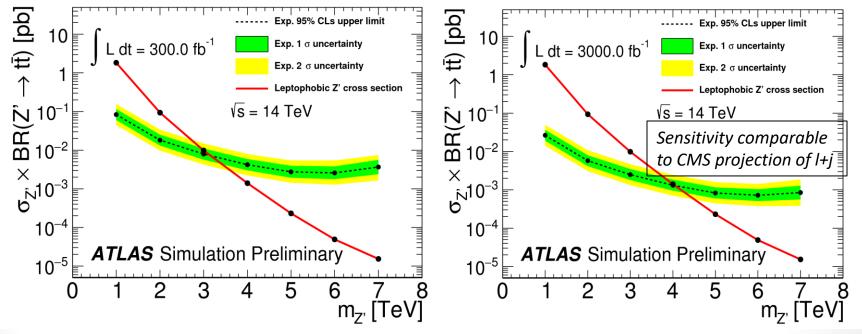
 Not a projection but DELPHES, incl. state-of-the-art Phase-2 performance from recent TDRs, e.g. high-granularity endcap calorimeter (HGCAL)


- Combine lepton+jets and all-jets channels
- Adapt analysis strategy for Z' masses above 4 TeV where off-shell production becomes important. Use PU200.
- Adapt systematics uncertainty scenarios to better understanding (ongoing)

8

PLAN, DELPHES

ATLAS Z´→tt→WbWb→lvbqqb


- Selection steps derived from Run-2, simplified.
- Discriminating variable = m(tt). Two categories: resolved and boosted
- Backgrounds simulated to NNLO

- Detector effects: parametrized performance estimate of Phase-2 Detector
- Applied systematics (derived from Run-1)
 - Luminosity 3%
 - On event yield in resolved category: 8.8% (signal), 10.8% (background)
 - On event yield in boosted category: 18% (signal), 13.4% (background)

ATLAS $Z' \rightarrow tt$

SIMPLIFIED ANALYSIS Signal model: topcolor model with spin-1 Z' boson, width 1.2%. PYTHIA 8. LO xsec * 1.3 (k-factor), Interference signal-bkgr neglected. For limits: LLH function based on binned ttbar mass spectrum with two hypothesis (s+b)(b). For each simulated signal mass.

Gain from HL: 3 TeV (300/fb) \rightarrow 4 TeV (3000/fb)

Same upgraded detector and PU for 300/fb and 3000/fb.


CMS W´→tb Projection

W

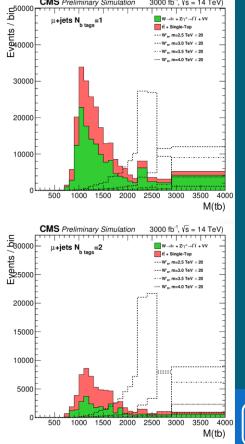
CMS Preliminary Simulation

Probe scenarios such $m(v_R) > m(W') \rightarrow$ forbidden for $W' \rightarrow lv$

- Projection from 12.9/fb
- Four search categories in leptonic decays: e/mu plus 1 or 2 bjets
 - Use standard lepton IDs
 - Jets are reconstructed with anti-kT, R=0.4, |η|<2.4
 - B-tagging eff = 80% with 10% mistagging probability
- Discriminating variable M(tb)
- Trigger threshold O(1 TeV)

15000

10000


5000

500

1000 1500 2000 2500

3000 3500 4000

M(tb)

B2G-15-004, B2G-16-017

Te<

at 13 [.]

<u> 3aseline analysis tb</u>

^orojection in

3000 fb⁻¹, √s = 14 TeV)

 $W \rightarrow I_V + Z/v^* \rightarrow I^*I' + VV$

DP-2016/064 and CMS-PAS-FTR-16-005

W´→tb Impact of Systematics

Three scenarios to extrapolate systematics from 12.9/fb to 3/ab

- 1) Leave systematics unchanged, simply scale templates with lumi
- 2) Reduce most experimental to <u>percent</u> level, theoretical uncertainties by factor 1/2, top p_T reweighting by factor 3.
- 3) No systematics (best possible limit)

Detailed Table in backup

PROJECTION

16-01

B2G-

5-004,

Ч С

B2

m

at

analysis tb

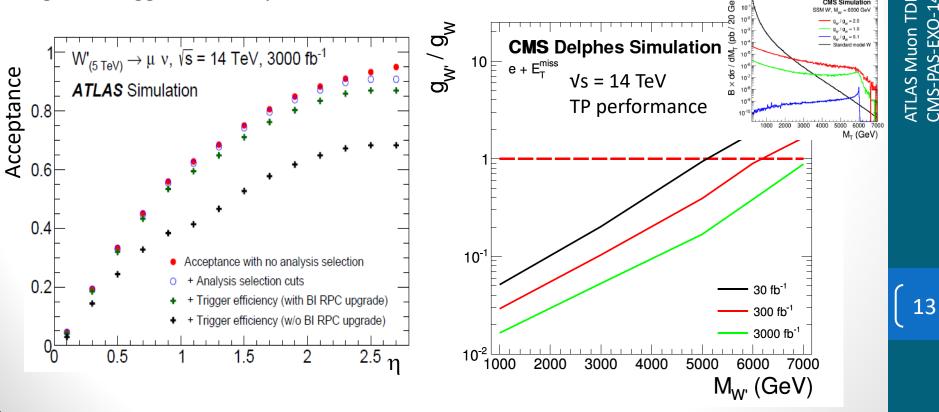
IeV B Land

064

DP-2016/

Baseline ar Projection

<u>-R-16-005</u>


Other Searches for Heavy Bosons

ATLAS and CMS are working on Z'/W' searches in general. See talks on heavy resonances at this workshop, by Sarah Demers (ATLAS) and Sadia Kalil (CMS).

W´ →µv (ATLAS Muon TDR) Cumulative acceptance as fct(η) with upgraded detector. With additional RPC gain in trigger efficiency 70% -> 90%. $W' \rightarrow ev$ (CMS-PAS-EXO-14-007) Discovery reach for SSM W`up to m(W') = 7 TeV @ 3/ab

Shown here study of coupling strength

CERN/LHCC/2017/077

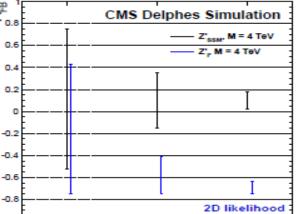
Property Measurements

What if we see a hint of a signal in Phase 1?

\rightarrow Study properties of "excess" with HL-LHC

CMS example: study new physics properties with high statistics in characteristic distributions, e.g. A_{FR} More A_{FB} studies by ATLAS and CMS from SM point **CMS Delphes Simulation** 4000 M_{aa} = 400-800 GeV Preliminarv direction 3500 3000 a Phase II 140 PU **Determine lepton** Phase I aged 140 PU 2500 Phase I 50 PU 2000 1500 1000 ۳ ۹_{0.8} CMS Delphes Simulation 500 0.6

New heavy spin-1 resonance (dilepton channel). Little theoretical constraints on A_{FR} value \rightarrow any value between -0.75 and +0.75.

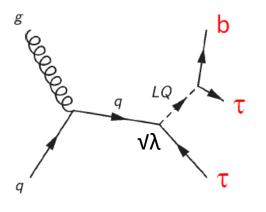

cose

	${\cal A}_{FB}$ up quarks	${\cal A}_{FB}$ down quarks	$A_{FB} \sqrt{s} = 13$ TeV pp collisions
Z'_{Ψ}	0	0	0
Z'_I	(no coupling)	-0.75	-0.75
Z'_{SSM}	0.075	0.105	0.08

/5=14 TeV

3000 fb⁻¹

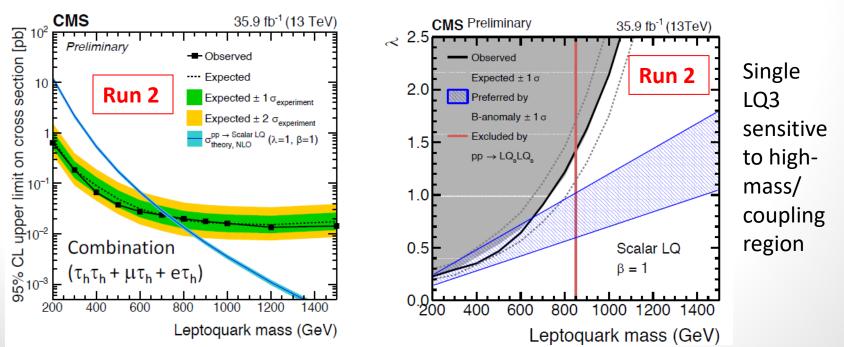
charge and direction


/S=14 TeV

300 fb⁻¹

(5=13 TeV)

100 fb⁻¹


CMS Plan: $LQ_3 \rightarrow \tau + b$

Model R₂~ as described in Phys. Rept. **641** (2016) Signal xsec and k-factor from theorist Signals simulated in LO with MG

- LQ always decays into $\tau + b (\beta = Br(LQ \rightarrow \tau b) = 1)$
- Unknown LQ- τ -b coupling λ (LQ- τ -b) = 1

Plan redo these two plots from existing Run-2 result

PLAN, DELPHES

Idea: $W' \rightarrow \tau + v$

Is it worth to project the NUGIM result in W'-> $\tau v?$

Complementary to W'->tb

USEFUL?

NUGIM Phys.Rev.D.81.015006, Phys.Lett.B 706 (2012) arXiv: 1408.0914

NUGIM (non-universal gauge interaction model) = enhanced coupling to 3rd generation. BR depends on mixing angle cot θ_E

 $SU(2)_{I} \otimes SU(2)_{h} \rightarrow SU(2)_{SM} \otimes SU(2)_{extended}$

Channel Matrix

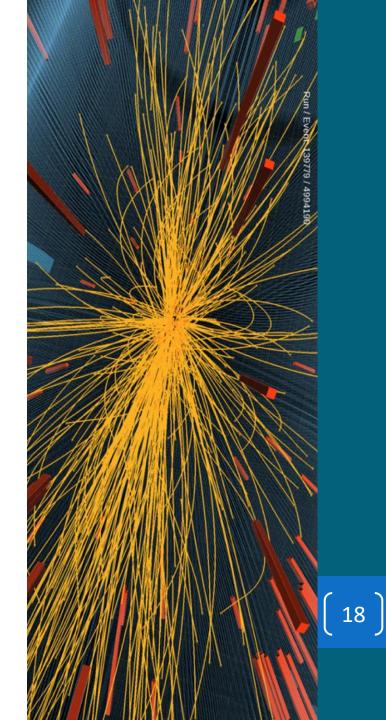
FOR DISCUSSION Several possibilities proposed to explain the flavor anomalies. For 3rd generation **mostly projections**. Ongoing efforts, rather full analyses.

Studies of systematics to be considered?

Question for theorists: where should we focus our efforts? Suggestions?

Channel	ATLAS	CMS	
Z´ → ttbar	Recent results from semi- leptonic channel, more in progress	Projection for I+j and jj channels. Plans to re-do with DELPHES and TDR-performance	
$Z' \rightarrow \tau \tau$	ATLAS and CMS are working on Z'/W' searches in general. Question for theorists: is it worth focusing on Z'-> $\tau\tau$ more ?		
W´ → tb	Result from ECFA2016. Run-2 driven analysis, simplified. Studies on systematics impact to be considered?	Projection from 12.9/fb for ECFA2016.	
$W' \rightarrow \tau v$		Interesting?	
LQ	Suggestions of necessary studies?	DELPHES based analysis of LQ3 \rightarrow tau+b planned for summer.	

Summary


Several possibilities proposed to explain the flavor anomalies.

Existing studies with 3rd family in final state mostly projections.

More ongoing, DELPHES-based study of LQ3 and $Z' \rightarrow$ ttbar.

Studies of systematics to be considered?

Cover all interesting channels? Something missing?

References

Public upgrade analyses

Z´→ttbar

- [ATL-PHYS-PUB-2017-002] Study on the prospects of a tt⁻ resonance search in events with one lepton at a High Luminosity LHC
- [CMS-PAS-FTR-16-005] Estimated Sensitivity for New Particle Searches at the HL-LHC
- CMS-TDR-17-007 HGCAL performance for high-mass tt resonances

W´→tb

 [CMS-PAS-FTR-16-005] Estimated Sensitivity for New Particle Searches at the HL-LHC

Other searches for heavy bosons (more in talks about heavy resonances):

- [CERN-LHCC-2017-017] $W' \rightarrow \mu v$ projection of acceptance gain
- [CMS-PAS-EXO-14-007] W' projected discovery reach for mass, couplings

Plans based on

- CMS-PAS-EXO-17-029 LQ3 -> tau + b
- CMS-PAS-EXO-17-008 W'-> tau + v

Talk by Gino Isidori at CMS week December 6th 2017

BACKUP MATERIAL

ATLAS Strategy for HL Studies

Overall strategy = generator-level truth with smeared detector response

- In general, use generator-level (truth) 14 TeV MC samples
- Overlay with jets (full sim) from pile-up library, <PU> = 140 or 200
- Reconstruct particles from truth + overlay
- Smear their energy and p_T using appropriate smearing functions, incl. Eff for genuine objects and rates from mis-identified objects.

Assumptions on systematics

- Evolvement of systematic + theoretical uncertainties: several scenarios based on how uncertainties will develop
- Detector upgrades designed to (at least) compensate degradations due to high pile-up
- Three uncertainty scenarios:
 - Unchanged (as in current analyses, mostly Run-2, some Run-1)
 - Reduced ×½
 - No systematic uncertainties

CMS Strategy for HL Studies

Projections from a present analysis (mostly this for 3rd family analyses)

- Existing signal and background samples (simulated at 13 TeV) scaled to higher luminosity and Vs=14 TeV. Different uncertainty scenarios.
- Analysis steps (cuts) from present analyses.

Full analyses with parametrized detector performance

- DELPHES with up-to-date phase-2 detector performance and <PU> = 200
- Analysis steps guided by present analysis. Limited optimization for HL conditions. Cross checks with present analyses.
- Dedicated simulation of signal and bkgr samples

Assumptions on systematics

- Evolvement of systematic + theoretical uncertainties
- Detector upgrades to compensate degradations due to high PU
- Three scenarios:
 - Unchanged, systematics kept as in current analyses
 - Reduced: Theoretical uncertainty ×½, experimental systematic uncertainty ∝1/VL until detector-driven lower limit is reached.
 - No systematic uncertainties

CMS Z´→ tt Projection Systematic Uncertainty Scenarios

Two scenarios to extrapolate systematics:

- Current run-2 systematics: certainly pessimistic approach. E.g. QCD is derived from data, errors reduce with larger dataset.
- 2. No systematics, corresponding to max sensitivity.

If applicable to both event categories, uncertainties are treated as correlated.

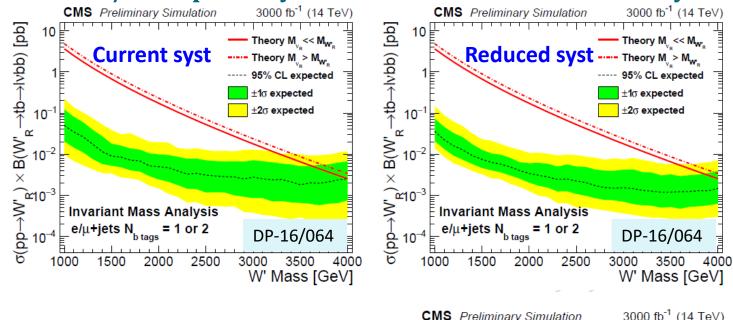
Uncertainty	Semileptonic	All-Hadronic
Z+jets σ	\checkmark	
W+jets σ	\checkmark	
$t\bar{t} \sigma$	\checkmark	\checkmark
Single t σ	\checkmark	
VV σ	\checkmark	
t-tagging Efficiency	\checkmark	\checkmark
t-mistagging Efficiency	\checkmark	
Pileup reweighting	\checkmark	Ń
Parton Distribution Functions	\checkmark	
Muon ID	√ /	
Muon Trigger	\checkmark	$\langle \rangle$
W+jets Q^2 Scale	\checkmark	
tī Q^2 Scale	\checkmark	\checkmark
tt Parton Shower Scale	\checkmark	\checkmark
NTMJ Jet Kinematics	/ /	\checkmark
NTMJ Closure Test		\checkmark
Luminosity Measurement		\checkmark
Jet Energy Resolution	\checkmark	\checkmark
Jet Energy Scale	\checkmark	\checkmark
Electron ID	\checkmark	
Electron Trigger	\checkmark	
b-tagging (HF) Efficiency	\checkmark	
b-tagging (LF) Efficiency	\checkmark	
Subjet b-tagging Efficiency		\checkmark
, , , , , , , , , , , , , , , , , , , ,		

B2G-15-003 ^brojection in DP-2016/064 and CMS-PAS-FTR-16-005 <u>13 TeV B2G-15-002,</u> **Baseline analyses at**

$\mathsf{CMSW} \rightarrow \mathsf{tbProjection}$

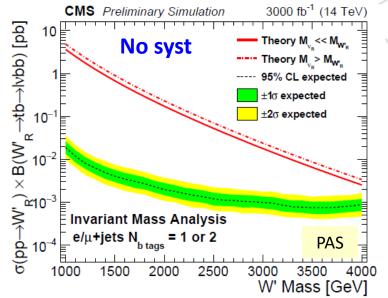
Systematic Uncertainty Scenarios

Two scenarios to extrapolate systematics from 12.9/fb to 3/ab


- 1) Current: Leave systematics unchanged w.r.t. run-2 baseline analysis
- 2) Reduced: scale most experimental to percent level, theo uncertainties by factor 2, top p_T reweighting by factor 3, lumi uncertainty to 1.5%

Source	Rate Uncertainty (Flat)	Rate Uncertainty (Scaled)
Luminosity	6.2%	1.5%
Trigger Efficiency (e/μ)	S 2%/5% 5%/2%	1%/1%
Lepton ID Efficiency (e/μ)	to 5%/2%	1%/1%
Jet Energy Scale	E 3.8%	1%
Jet Energy Resolution	1%	
<i>b/c</i> -tagging	1% 2.7%	0.07% 1% 1.2% 1.1% 6%
light quark mis-tagging	▶ 1.2%	L 1.2%
W+jets Heavy Flavor Fraction	⊆ <u>2.3%</u>	1.1%
Top p_T Reweighting	Ung 2.3%	≻ 6%
Pileup	1.3%	0.09%
PDF	t 61%	0 3%
Matrix element Q^2 scale	<u>e</u> 18.9%	9 .5%
$t\bar{t}$ Parton matching Q^2 scale	5 1.7%	0.09% 3% 9.5% 0.9%
Theoretical top cross section	O 15%	7.5%
Theoretical bosonic cross section	10%	5%

3) Also "no systematics scenario", corresponding to maximum sensitivity


W´→tb Projected Exclusions

Exclusion for 3/ab. Impact of systematic uncertainties on sensitivity

Current (run-2) systematics = worst case. Expect improvements from phase-2 detector and better theorical calculations.

With "reduced syst" and "no syst" exclusion for m(W')>4 TeV. Such high masses require analysis optimization (not done for this study).

