



# High Luminosity/High Energy LHC perspectives on Taus

Emilie Passemar Indiana University/Jefferson Laboratory

HL/HE LHC meeting Fermilab, April 5, 2018

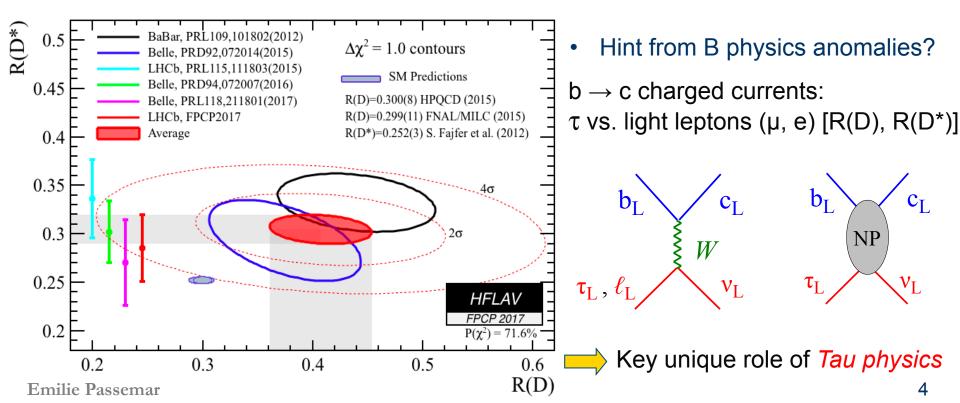
#### Outline:

- 1. Introduction and Motivation:
- 2. Lepton Flavour Violation
- 3. Other interesting topics with tau decays
- 4. Conclusion and outlook

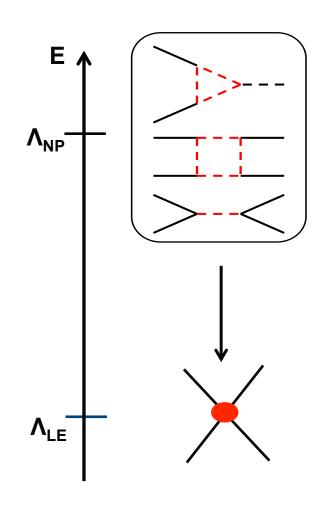
## 1.1 Quest for New Physics

- New era in particle physics :
  - (unexpected) success of the Sta G. Isidori Kaon Physics: the next step microscopic phenomena with no intrir
- Where do we look? Everywhere! G search strategy given lack of clear (both in energies and effective coup

BaBar, PRL109,101802(2012)


#### Lepton Flavor Universality

A renewed interest in possible violar represent sets of observations in


Belle, PRD92,072014(2015) 
$$0.45 \\ 0.45 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\ 0.46 \\$$

## 1.1 Quest for New Physics

- New era in particle physics :
   (unexpected) success of the Standard Model: a successful theory of microscopic phenomena with no intrinsic energy limitation
- Where do we look? Everywhere! search for New Physics with broad search strategy given lack of clear indications on the SM-EFT boundaries (both in energies and effective couplings)



## 1.2 τ lepton as a unique probe of new physics



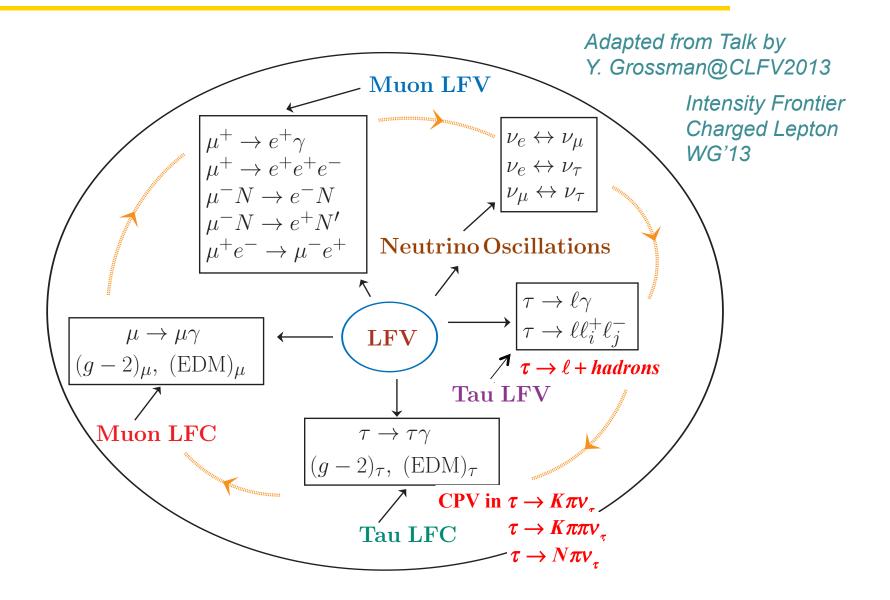
- In the quest of New Physics, can be sensitive to very high scale:
  - Kaon physics:  $\boxed{\frac{s\overline{d}s\overline{d}}{\Lambda^2}} \quad \Rightarrow \quad \Lambda \gtrsim 10^5 \text{ TeV}$
  - Tau Leptons:  $\boxed{ \frac{\tau \overline{\mu} f \overline{f}}{\Lambda^2} } \Rightarrow \Lambda \gtrsim 10^{2} \text{TeV}$
- At low energy: lots of experiments e.g.,
   BaBar, Belle, BESIII, LHCb important
   improvements on measurements and bounds
   obtained and more expected (Belle II, LHCb, ATLAS,
   CMS)
- In many cases no SM background: e.g., LFV, EDMs
- For some modes accurate calculations of hadronic uncertainties essential, e.g. CPV in hadronic Tau decays

## 1.2 τ lepton as a unique probe of new physics

 A lot of progress in tau physics since its discovery on all the items described before important experimental efforts from

LEP, CLEO, B factories: Babar, Belle, BES, VEPP-2M, LHCb, neutrino experiments,...

More to come from LHCb, BES, VEPP-2M, Belle II, CMS, ATLAS, HL/HI LHC


 But τ physics has still potential "unexplored frontiers"

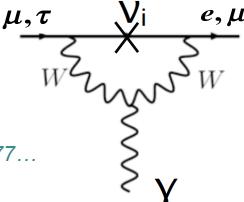
deserve future exp. & th. efforts

In the following, some selected examples

| Experiment | Number of $\tau$ pairs |
|------------|------------------------|
| LEP        | ~3x10 <sup>5</sup>     |
| CLEO       | ~1x10 <sup>7</sup>     |
| BaBar      | ~5x10 <sup>8</sup>     |
| Belle      | ~9x10 <sup>8</sup>     |
| Belle II   | ~1012                  |

#### 1.3 The Program




# 2. Charged Lepton-Flavour Violation

#### 2.1 Introduction and Motivation

- Lepton Flavour Number is an « accidental » symmetry of the SM (m<sub>v</sub>=0)
- In the SM with massive neutrinos effective CLFV vertices are tiny due to GIM suppression in unobservably small rates!

E.g.: 
$$\mu \to e\gamma$$

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{1i}^2}{M_W^2} \right|^2 < 10^{-54}$$

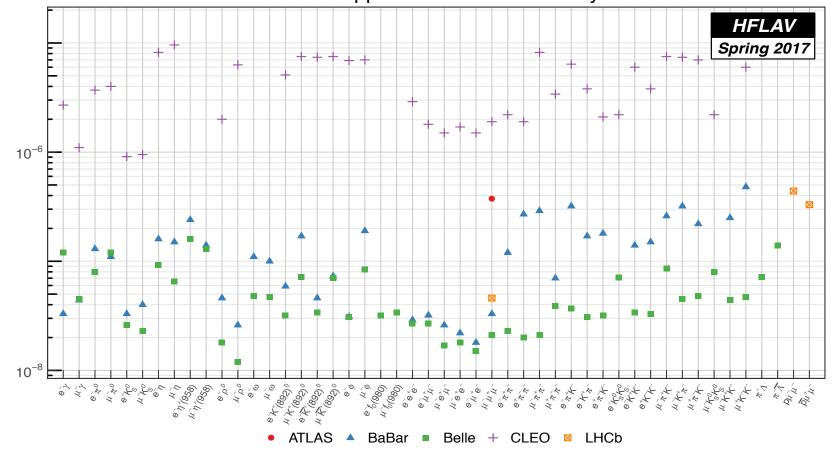


Petcov'77, Marciano & Sanda'77, Lee & Shrock'77...

$$Br(\tau \to \mu \gamma) < 10^{-40}$$

- Extremely clean probe of beyond SM physics
- In New Physics models: seazible effects
   Comparison in muonic and tauonic channels of branching ratios,
   conversion rates and spectra is model-diagnostic

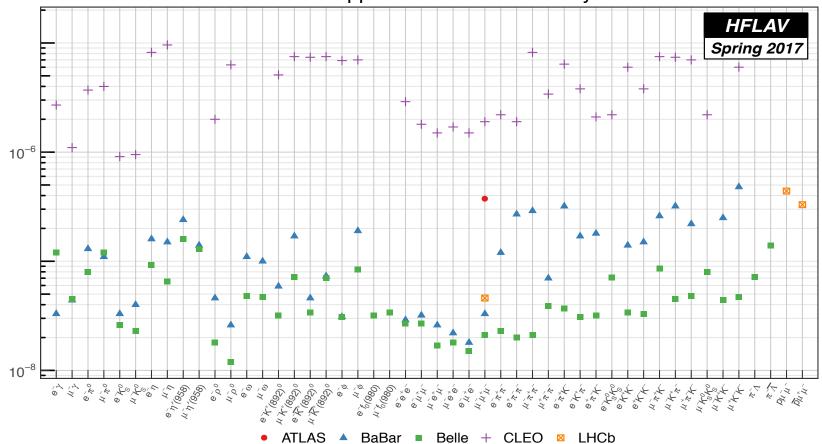
#### 2.1 Introduction and Motivation


In New Physics scenarios CLFV can reach observable levels in several channels

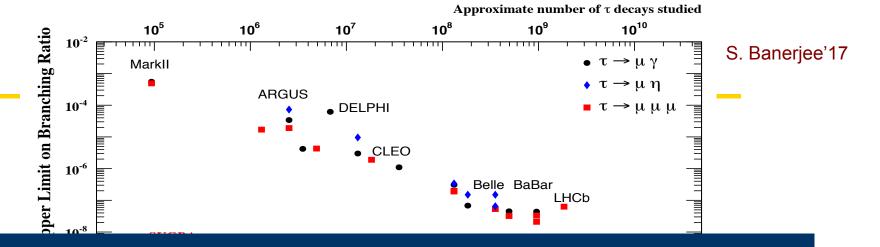
| Talk by D. Hitlin             | $	au 	o \mu \gamma \ \tau 	o \ell \ell \ell$                                                                          |              |       |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------|-------|
| SM + v mixing                 | Lee, Shrock, PRD 16 (1977) 1444<br>Cheng, Li, PRD 45 (1980) 1908                                                      | Undetectable |       |
| SUSY Higgs                    | Dedes, Ellis, Raidal, PLB 549 (2002) 159<br>Brignole, Rossi, PLB 566 (2003) 517                                       | 10-10        | 10-7  |
| SM + heavy Maj v <sub>R</sub> | 6M + heavy Maj v <sub>R</sub>                                                                                         |              | 10-10 |
| Non-universal Z'              | Yue, Zhang, Liu, PLB 547 (2002) 252                                                                                   | 10-9         | 10-8  |
| SUSY SO(10)                   | Masiero, Vempati, Vives, NPB 649 (2003) 189<br>Fukuyama, Kikuchi, Okada, PRD 68 (2003) 033012                         | 10-8         | 10-10 |
| mSUGRA + Seesaw               | Ellis, Gomez, Leontaris, Lola, Nanopoulos, EPJ C14 (2002) 319<br>Ellis, Hisano, Raidal, Shimizu, PRD 66 (2002) 115013 | 10-7         | 10-9  |

- But the sensitivity of particular modes to CLFV couplings is model dependent
- Comparison in muonic and tauonic channels of branching ratios, conversion rates and spectra is model-diagnostic

#### 2.2 Tau LFV

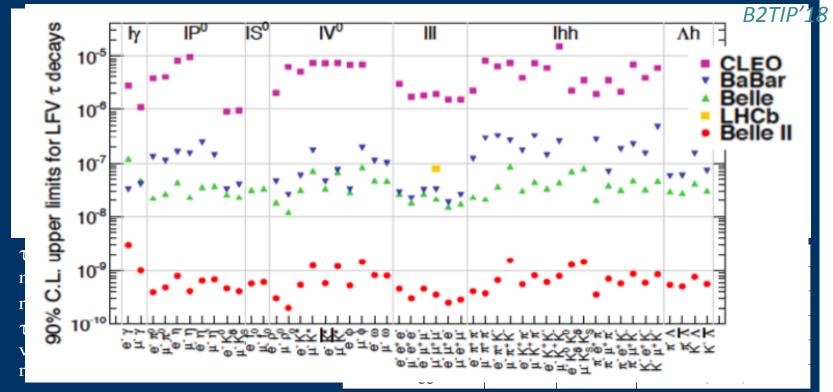

• Several processes:  $\tau \to \ell \gamma, \ \tau \to \ell_{\alpha} \overline{\ell}_{\beta} \ell_{\beta}, \ \tau \to \ell Y$ 90% CL upper limits on  $\tau$  LFV decays




48 LFV modes studied at Belle and BaBar

#### 2.2 Tau LFV

• Several processes:  $\tau \to \ell \gamma, \ \tau \to \ell_{\alpha} \overline{\ell}_{\beta} \ell_{\beta}, \ \tau \to \ell Y$ 90% CL upper limits on  $\tau$  LFV decays




• Expected sensitivity 10<sup>-9</sup> or better at *LHCb, ATLAS, CMS, Belle II, HL-LHC?* 



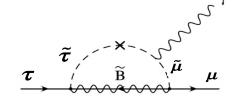
#### Belle II physics prospect – tau LFV





**Emil** 

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$


Build all D>5 LFV operators:

See e.g.
Black, Han, He, Sher'02
Brignole & Rossi'04
Dassinger et al.'07
Matsuzaki & Sanda'08
Giffels et al.'08
Crivellin, Najjari, Rosiek'13
Petrov & Zhuridov'14
Cirigliano, Celis, E.P.'14

Dipole:

$$\mathcal{L}_{eff}^{D} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu\nu} P_{L,R} \tau F_{\mu\nu}$$

e.g.



$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

• Build all D>5 LFV operators:

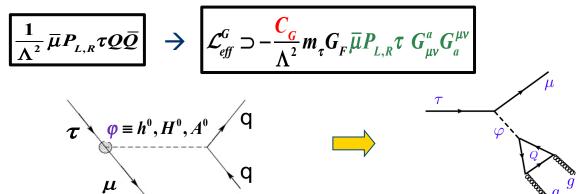
ightharpoonup Dipole:  $\mathcal{L}_{eff}^{D} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu\nu} P_{L,R} \tau F_{\mu\nu}$ 

See e.g.
Black, Han, He, Sher'02
Brignole & Rossi'04
Dassinger et al.'07
Matsuzaki & Sanda'08
Giffels et al.'08
Crivellin, Najjari, Rosiek'13
Petrov & Zhuridov'14
Cirigliano, Celis, E.P.'14

Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector):

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

Build all D>5 LFV operators:


ightharpoonup Dipole:  $\left| \mathcal{L}_{eff}^{D} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu \nu} P_{L,R} \tau F_{\mu \nu} \right|$ 

See e.g. Black, Han, He, Sher'02 Brignole & Rossi'04 Dassinger et al.'07 Matsuzaki & Sanda'08 Giffels et al.'08 Crivellin, Najjari, Rosiek'13 Petrov & Zhuridov'14 Cirigliano, Celis, E.P.'14

 $\blacktriangleright$  Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector):  $\mathcal{L}_{e\!f\!f}^{s} \supset -\frac{C_{s,V}}{\Lambda^2} m_{\tau} m_{q} G_{F} \overline{\mu} \Gamma P_{L,R} \tau \overline{q} \Gamma q$ 

$$\mathcal{L}_{eff}^{S} \supset -\frac{C_{S,V}}{\Lambda^{2}} m_{\tau} m_{q} G_{F} \overline{\mu} \Gamma P_{L,R} \tau \overline{q} \Gamma q$$

Integrating out heavy quarks generates gluonic operator



$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

Build all D>5 LFV operators:

ightharpoonup Dipole:  $\mathcal{L}_{eff}^{D} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu\nu} P_{L,R} \tau F_{\mu\nu}$ 

See e.g. Black, Han, He, Sher'02 Brignole & Rossi'04 Dassinger et al.'07 Matsuzaki & Sanda'08 Giffels et al.'08 Crivellin, Najjari, Rosiek'13 Petrov & Zhuridov'14 Cirigliano, Celis, E.P.'14

 $\blacktriangleright$  Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector):  $\mathcal{L}_{e\!f\!f}^{S} \supset -\frac{C_{S,V}}{\Lambda^2} m_{\tau} m_{q} G_{F} \overline{\mu} \Gamma P_{L,R} \tau \overline{q} \Gamma q$ 

$$\mathcal{L}_{eff}^{S} \supset -\frac{C_{S,V}}{\Lambda^{2}} m_{\tau} m_{q} G_{F} \overline{\mu} \Gamma P_{L,R} \tau \overline{q} \Gamma q$$

➤ 4 leptons (Scalar, Pseudo-scalar, Vector, Axial-vector):

$$\mathcal{L}_{eff}^{4\ell} \supset -\frac{C_{S,V}^{4\ell}}{\Lambda^2} \overline{\mu} \; \Gamma P_{L,R} \tau \; \overline{\mu} \; \Gamma P_{L,R} \mu$$

 $\Gamma \equiv 1, \gamma^{\mu}$ 

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

Build all D>5 LFV operators:

ightharpoonup Dipole:  $\left| \mathcal{L}_{eff}^{D} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu \nu} P_{L,R} \tau F_{\mu \nu} \right|$ 

See e.g. Black, Han, He, Sher'02 Brignole & Rossi'04 Dassinger et al.'07 Matsuzaki & Sanda'08 Giffels et al.'08 Crivellin, Najjari, Rosiek'13 Petrov & Zhuridov'14 Cirigliano, Celis, E.P.'14

 $\blacktriangleright$  Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector):  $\mathcal{L}_{e\!f\!f}^{S} \supset -\frac{C_{S,V}}{\Lambda^2} m_{\tau} m_{q} G_{F} \overline{\mu} \Gamma P_{L,R} \tau \overline{q} \Gamma q$ 

$$\mathcal{L}_{eff}^{S} \supset -\frac{C_{S,V}}{\Lambda^{2}} m_{\tau} m_{q} G_{F} \overline{\mu} \Gamma P_{L,R} \tau \overline{q} \Gamma q$$

$$ightharpoonup$$
 Lepton-gluon (Scalar, Pseudo-scalar):  $\mathcal{L}_{e\!f\!f}^G \supset -\frac{C_G}{\Lambda^2} m_\tau G_F \overline{\mu} P_{L,R} \tau G_\mu^a G_\mu^{\mu\nu}$ 

4 leptons (Scalar, Pseudo-scalar, Vector, Axial-vector):

$$\mathcal{L}_{eff}^{4\ell} \supset -\frac{C_{S,V}^{4\ell}}{\Lambda^2} \overline{\mu} \Gamma P_{L,R} \tau \overline{\mu} \Gamma P_{L,R} \mu$$

Each UV model generates a *specific pattern* of them

$$\Gamma \equiv 1 , \gamma^{\mu}$$

#### 2.4 Model discriminating power of Tau processes

Summary table:

Celis, Cirigliano, E.P.'14

|                        | $	au 	o 3\mu$ | $	au 	o \mu \gamma$ | $	au 	o \mu \pi^+ \pi^-$ | $	au 	o \mu K ar{K}$ | $	au 	o \mu\pi$ | $	au 	o \mu \eta^{(\prime)}$ |
|------------------------|---------------|---------------------|--------------------------|----------------------|-----------------|------------------------------|
| ${ m O_{S,V}^{4\ell}}$ | ✓             | _                   | _                        | _                    | _               | _                            |
| $O_D$                  | ✓             | ✓                   | ✓                        | ✓                    | _               | _                            |
| $\mathrm{O_{V}^{q}}$   | _             | _                   | ✓ (I=1)                  | $\checkmark$ (I=0,1) | _               | _                            |
| ${ m O_S^q}$           | _             | _                   | ✓ (I=0)                  | $\checkmark$ (I=0,1) | _               | _                            |
| $O_{GG}$               | _             | _                   | ✓                        | ✓                    | _               | _                            |
| $\mathrm{O_A^q}$       | _             | _                   | _                        | _                    | ✓ (I=1)         | ✓ (I=0)                      |
| $O_{P}^{q}$            | _             | _                   | _                        | _                    | ✓ (I=1)         | ✓ (I=0)                      |
| $O_{G\widetilde{G}}$   | _             | _                   | _                        | _                    | _               | ✓                            |

- In addition to leptonic and radiative decays, *hadronic decays* are very important sensitive to large number of operators!
- But need reliable determinations of the hadronic part: form factors and *decay constants* (e.g.  $f_n$ ,  $f_n$ )

#### 2.4 Model discriminating power of Tau processes

Summary table:

Celis, Cirigliano, E.P.'14

|                                        | $	au 	o 3\mu$ | $	au 	o \mu \gamma$ | $	au 	o \mu \pi^+ \pi^-$ | $	au 	o \mu K ar{K}$ | $	au 	o \mu\pi$ | $	au 	o \mu \eta^{(\prime)}$ |
|----------------------------------------|---------------|---------------------|--------------------------|----------------------|-----------------|------------------------------|
| ${ m O_{S,V}^{4\ell}}$                 | ✓             | _                   | _                        | _                    | _               | _                            |
| $O_D$                                  | ✓             | ✓                   | ✓                        | ✓                    | _               | _                            |
| $\mathrm{O_{V}^{q}}$                   | _             | _                   | ✓ (I=1)                  |                      | _               | _                            |
| $O_{\mathrm{S}}^{\mathrm{q}}$          | _             | _                   | ✓ (I=0)                  | $\checkmark$ (I=0,1) | _               | _                            |
| $O_{GG}$                               | _             | _                   | ✓                        | ✓                    | _               | _                            |
| $\mathrm{O}_{\mathrm{A}}^{\mathrm{q}}$ | _             | _                   | _                        | _                    | ✓ (I=1)         | ✓ (I=0)                      |
| $\mathrm{O}_{\mathrm{P}}^{\mathrm{q}}$ | _             | _                   | _                        | _                    | ✓ (I=1)         | ✓ (I=0)                      |
| ${\rm O_{G\widetilde{G}}}$             | _             | _                   | _                        | _                    | _               | ✓                            |

• Form factors for  $\tau \to \mu(e)\pi\pi$  determined using dispersive techniques

 $n=\pi\pi, K\overline{K}$ 

Hadronic part:

$$\boldsymbol{H}_{\mu} = \left\langle \pi \pi \middle| \left( V_{\mu} - A_{\mu} \right) e^{iL_{QCD}} \middle| \mathbf{0} \right\rangle = \left( Lorentz \text{ struct.} \right)_{\mu}^{i} \boldsymbol{F}_{i} \left( \boldsymbol{s} \right) \qquad \boldsymbol{s} = \left( \boldsymbol{p}_{\pi^{+}} + \boldsymbol{p}_{\pi^{-}} \right)^{2}$$

Donoghue, Gasser, Leutwyler'90

with Moussallam'99  $s = \left(p_{\pi^+} + p_{\pi^-}\right)^2 \qquad Daub \ et \ al'13$  Celis, Cirigliano, E.P.'14

• 2-channel unitarity condition is solved with I=0 S-wave  $\pi\pi$  and KK scattering data as input

$$\operatorname{Im} F_n(s) = \sum_{m=1}^2 T_{nm}^*(s) \sigma_m(s) F_m(s)$$

#### 2.4 Model discriminating power of Tau processes

Summary table:

Celis, Cirigliano, E.P.'14

|                                        | $	au 	o 3\mu$ | $	au 	o \mu \gamma$ | $	au 	o \mu \pi^+ \pi^-$ | $	au 	o \mu K ar{K}$ | $	au 	o \mu\pi$ | $	au 	o \mu \eta^{(\prime)}$ |
|----------------------------------------|---------------|---------------------|--------------------------|----------------------|-----------------|------------------------------|
| ${ m O_{S,V}^{4\ell}}$                 | ✓             | _                   | _                        | _                    | _               | _                            |
| $O_D$                                  | ✓             | ✓                   | ✓                        | ✓                    | _               | _                            |
| $\mathrm{O_{V}^{q}}$                   | _             | _                   | ✓ (I=1)                  | $\checkmark$ (I=0,1) | _               | _                            |
| $O_S^q$                                | _             | _                   | ✓ (I=0)                  |                      | _               | _                            |
| $O_{GG}$                               | _             | _                   | ✓                        | ✓                    | _               | _                            |
| $\mathrm{O}_{\mathrm{A}}^{\mathrm{q}}$ | _             | _                   | _                        | _                    | ✓ (I=1)         | ✓ (I=0)                      |
| $O_{\mathbf{P}}^{\mathbf{q}}$          | _             | _                   | _                        | _                    | ✓ (I=1)         | ✓ (I=0)                      |
| $O_{G\widetilde{G}}$                   | _             | _                   | _                        | _                    | _               | ✓                            |

- The notion of "best probe" (process with largest decay rate) is model dependent
- If observed, compare rate of processes key handle on relative strength between operators and hence on the underlying mechanism

#### 2.5 Handles

#### Two handles:

> Spectra for > 2 bodies in the final state:

$$\frac{dBR(\tau \to \mu\mu\mu)}{d\sqrt{s}}$$

#### Benchmarks:

- ➤ Dipole model:  $C_D \neq 0$ ,  $C_{else} = 0$
- ➤ Scalar model:  $C_S \neq 0$ ,  $C_{else} = 0$
- Vector (gamma,Z) model: C<sub>V</sub> ≠ 0, C<sub>else</sub>= 0
- ➤ Gluonic model:  $C_{GG} \neq 0$ ,  $C_{else} = 0$

#### 2.6 Model discriminating of BRs

Celis, Cirigliano, E.P.'14

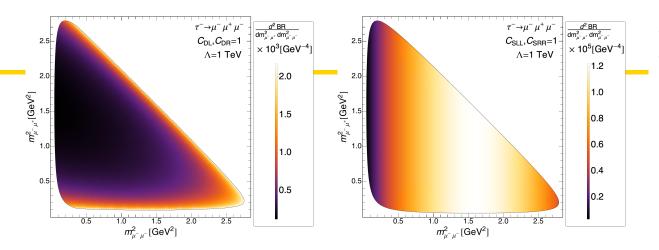
Two handles:

wo handles.

> Branching ratios: 
$$R_{F,M} = \frac{\Gamma(\tau \to F)}{\Gamma(\tau \to F_M)}$$
 with  $F_M$  dominant LFV mode for model M

|                |                      | $\mu\pi^+\pi^-$      | $\mu  ho$               | $\mu f_0$               | $3\mu$               | $\mu\gamma$         |
|----------------|----------------------|----------------------|-------------------------|-------------------------|----------------------|---------------------|
| D              | $R_{F,D}$            | $0.26\times10^{-2}$  | $0.22\times10^{-2}$     | $0.13\times10^{-3}$     | $0.22\times10^{-2}$  | 1                   |
|                | BR                   | $<1.1\times10^{-10}$ | $< 9.7 \times 10^{-11}$ | $<5.7\times10^{-12}$    | $<9.7\times10^{-11}$ | $<4.4\times10^{-8}$ |
| S              | $R_{F,S}$            | 1                    | 0.28                    | 0.7                     | -                    | -                   |
|                | BR                   | $<~2.1\times10^{-8}$ | $< 5.9 \times 10^{-9}$  | $< 1.47 \times 10^{-8}$ | -                    | -                   |
| $V^{(\gamma)}$ | $R_{F,V^{(\gamma)}}$ | 1                    | 0.86                    | 0.1                     | -                    | -                   |
|                | BR                   | $<~1.4\times10^{-8}$ | $< 1.2 \times 10^{-8}$  | $< 1.4 \times 10^{-9}$  | -                    | -                   |
| Z              | $R_{F,Z}$            | 1                    | 0.86                    | 0.1                     | -                    | -                   |
|                | BR                   | $<~1.4\times10^{-8}$ | $< 1.2 \times 10^{-8}$  | $< 1.4 \times 10^{-9}$  | -                    | -                   |
| G              | $R_{F,G}$            | 1                    | 0.41                    | 0.41                    | -                    | -                   |
| <b>→</b>       | BR                   | $<~2.1\times10^{-8}$ | $< 8.6 \times 10^{-9}$  | $< 8.6 \times 10^{-9}$  | -                    | -                   |

# 2.6 Model discriminating of BRs


#### Studies in specific models

Buras et al.'10

| ratio                                                                                                 | LHT                | MSSM (dipole)          | MSSM (Higgs)           | SM4               |
|-------------------------------------------------------------------------------------------------------|--------------------|------------------------|------------------------|-------------------|
| $\frac{\operatorname{Br}(\mu^- \to e^- e^+ e^-)}{\operatorname{Br}(\mu \to e\gamma)}$                 | 0.021              | $\sim 6 \cdot 10^{-3}$ | $\sim 6 \cdot 10^{-3}$ | 0.06 2.2          |
| $\frac{\operatorname{Br}(\tau^- \to e^- e^+ e^-)}{\operatorname{Br}(\tau \to e\gamma)}$               | $0.04.\dots0.4$    | $\sim 1 \cdot 10^{-2}$ | $\sim 1 \cdot 10^{-2}$ | $0.07 \dots 2.2$  |
| $\frac{\operatorname{Br}(\tau^- \to \mu^- \mu^+ \mu^-)}{\operatorname{Br}(\tau \to \mu \gamma)}$      | 0.040.4            | $\sim 2 \cdot 10^{-3}$ | 0.060.1                | 0.06 2.2          |
| $\frac{\operatorname{Br}(\tau^- \to e^- \mu^+ \mu^-)}{\operatorname{Br}(\tau \to e\gamma)}$           | 0.040.3            | $\sim 2 \cdot 10^{-3}$ | 0.020.04               | 0.031.3           |
| $\frac{\operatorname{Br}(\tau^- \to \mu^- e^+ e^-)}{\operatorname{Br}(\tau \to \mu \gamma)}$          | 0.040.3            | $\sim 1 \cdot 10^{-2}$ | $\sim 1 \cdot 10^{-2}$ | 0.04 1.4          |
| $\frac{\operatorname{Br}(\tau^- \to e^- e^+ e^-)}{\operatorname{Br}(\tau^- \to e^- \mu^+ \mu^-)}$     | 0.82               | $\sim 5$               | 0.30.5                 | $1.5 \dots 2.3$   |
| $\frac{\operatorname{Br}(\tau^- \to \mu^- \mu^+ \mu^-)}{\operatorname{Br}(\tau^- \to \mu^- e^+ e^-)}$ | 0.71.6             | $\sim 0.2$             | 510                    | $1.4 \dots 1.7$   |
| $\frac{\mathrm{R}(\mu\mathrm{Ti}{\to}e\mathrm{Ti})}{\mathrm{Br}(\mu{\to}e\gamma)}$                    | $10^{-3}\dots10^2$ | $\sim 5 \cdot 10^{-3}$ | 0.080.15               | $10^{-12}\dots26$ |



Disentangle the *underlying dynamics* of NP



Dassinger, Feldman, Mannel, Turczyk' 07 Celis, Cirigliano, E.P.'14

Figure 3: Dalitz plot for  $\tau^- \to \mu^- \mu^+ \mu^-$  decays when all operators are assumed to vanish with the exception of  $C_{DL,DR} = 1$  (left) and  $C_{SLL,SRR} = 1$  (right), taking  $\Lambda = 1$  TeV in both cases. Colors denote the density for  $d^2BR/(dm_{\mu^-\mu^+}^2dm_{\mu^-\mu^-}^2)$ , small values being represented by darker colors and large values in lighter ones. Here  $m_{\mu^-\mu^+}^2$  represents  $m_{12}^2$  or  $m_{23}^2$ , defined in Sec. 3.1.

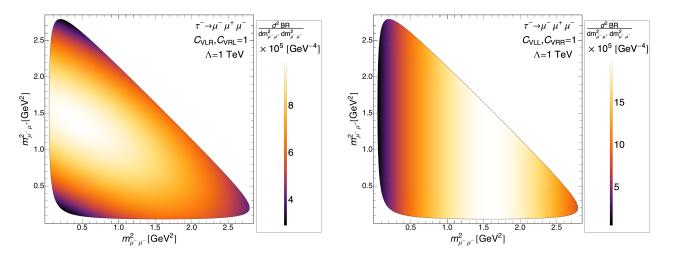
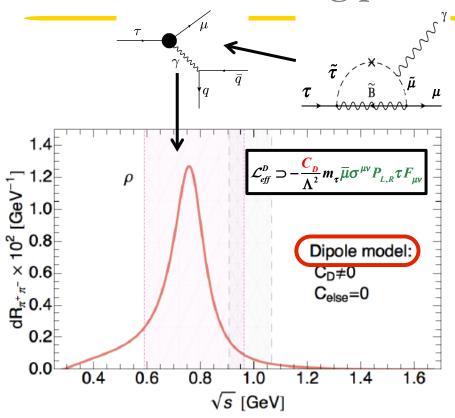
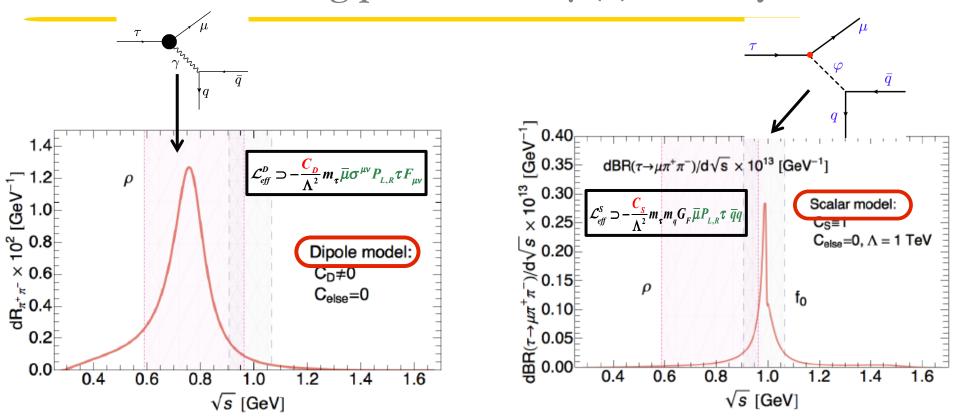
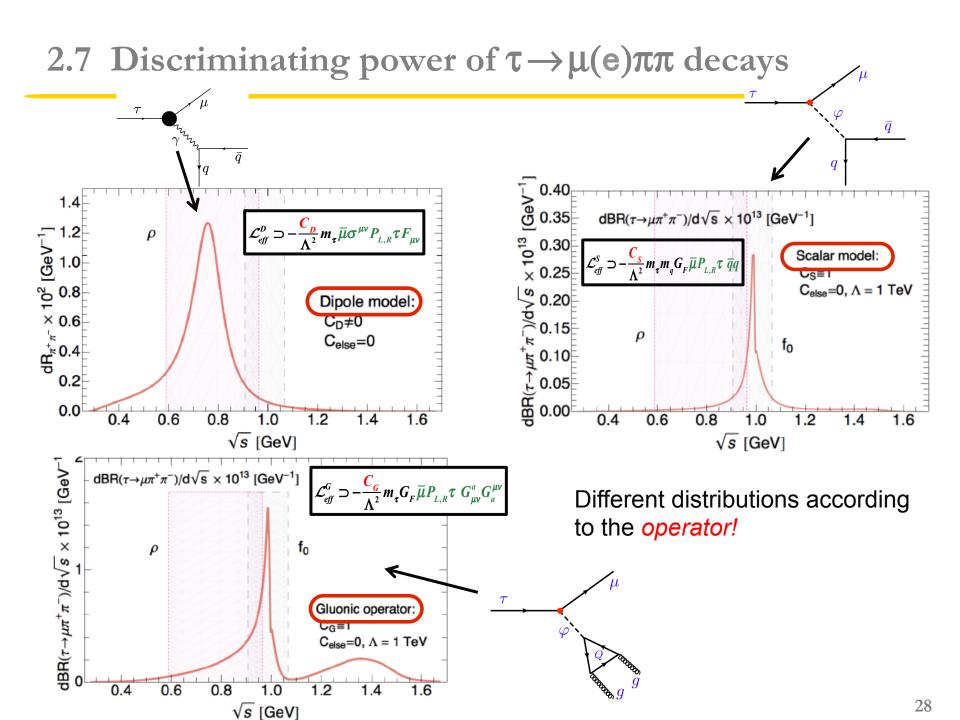




Figure 4: Dalitz plot for  $\tau^- \to \mu^- \mu^+ \mu^-$  decays when all operators are assumed to vanish with the exception of  $C_{VRL,VLR} = 1$  (left) and  $C_{VLL,VRR} = 1$  (right), taking  $\Lambda = 1$  TeV in both cases. Colors are defined as in Fig. 3.

Angular analysis with polarized taus


Dassinger, Feldman, Mannel, Turczyk' 07


# 2.7 Discriminating power of $\tau \rightarrow \mu(e)\pi\pi$ decays



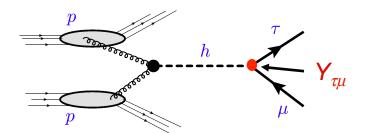
Celis, Cirigliano, E.P.'14

# 2.7 Discriminating power of $\tau \rightarrow \mu(e)\pi\pi$ decays

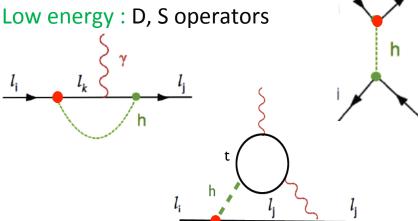




# 2.8 Non standard LFV Higgs coupling


$$\Delta \mathcal{L}_{Y} = -\frac{\lambda_{ij}}{\Lambda^{2}} \left( \overline{f}_{L}^{i} f_{R}^{j} H \right) H^{\dagger} H$$




In the SM: 
$$Y_{ij}^{h_{SM}} = \frac{m_i}{V} \delta_{ij}$$

Goudelis, Lebedev, Park'11 Davidson, Grenier'10 Harnik, Kopp, Zupan'12 Blankenburg, Ellis, Isidori'12 McKeen, Pospelov, Ritz'12 Arhrib, Cheng, Kong'12





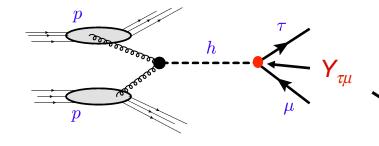
Hadronic part treated with perturbative QCD



29

# 2.8 Non standard LFV Higgs coupling

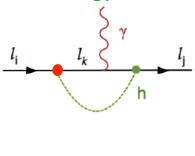
$$\Delta \mathcal{L}_{Y} = -\frac{\lambda_{ij}}{\Lambda^{2}} \left( \overline{f}_{L}^{i} f_{R}^{j} H \right) H^{\dagger} H$$

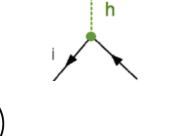


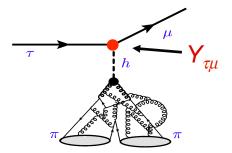

$$-Y_{ij}\left(\overline{f}_{L}^{i}f_{R}^{j}\right)h$$

High energy: LHC

In the SM: 
$$Y_{ij}^{h_{SM}} = \frac{m_i}{V} \delta_{ij}$$

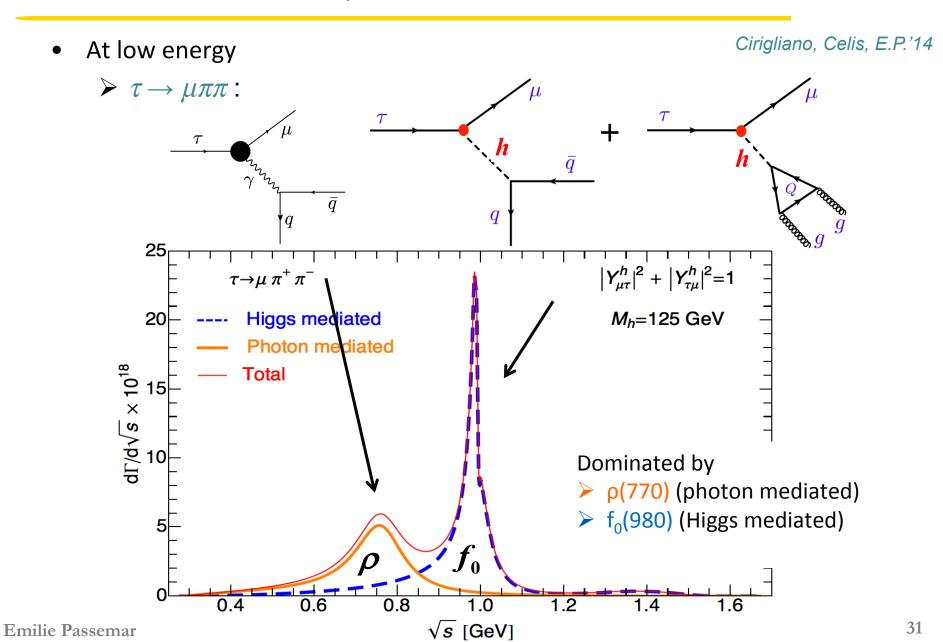

Goudelis, Lebedev, Park'11 Davidson, Grenier'10 Harnik, Kopp, Zupan'12 Blankenburg, Ellis, Isidori'12 McKeen, Pospelov, Ritz'12 Arhrib, Cheng, Kong'12



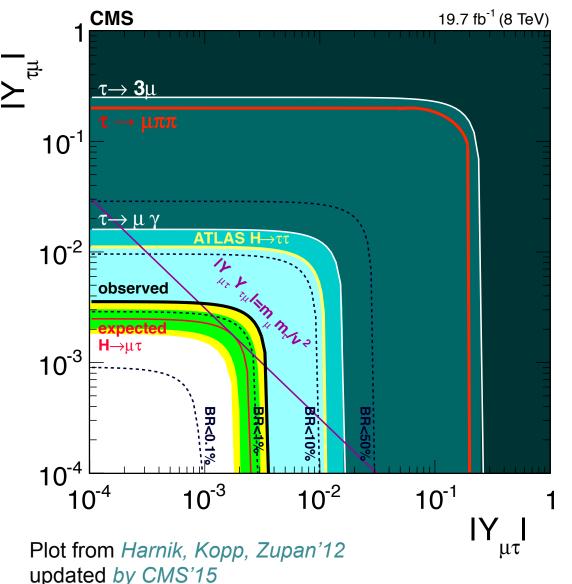


Hadronic part treated with perturbative QCD

Reverse the process

Low energy: D, S, G operators





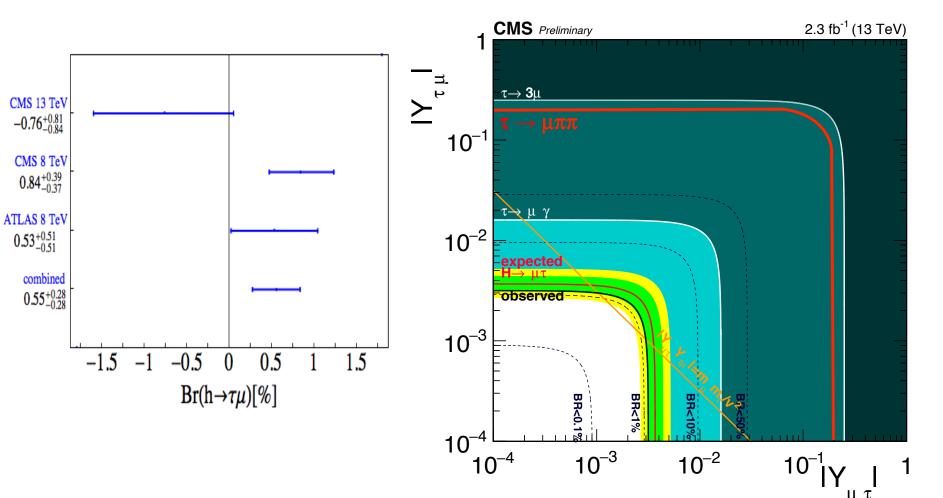

Hadronic part treated with non-perturbative QCD

#### Constraints in the th sector

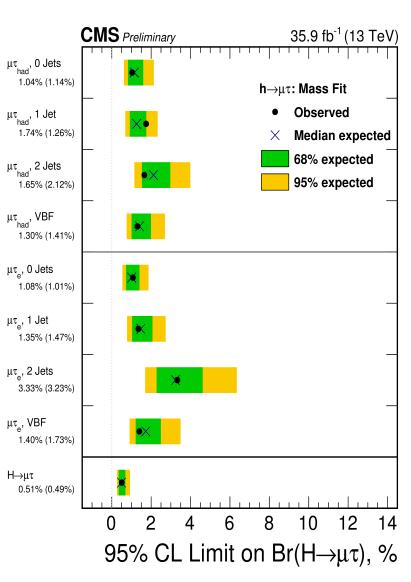


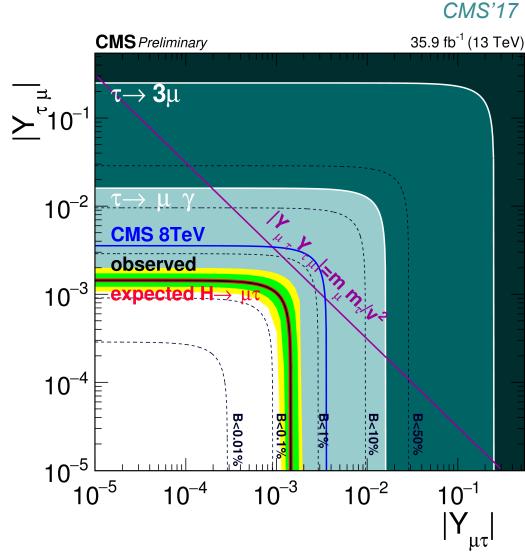
#### Constraints in the the sector




- Constraints from LE:
  - $\tau \rightarrow \mu \gamma$ : best constraints but loop level  $\Rightarrow$  sensitive to UV completion of the theory
  - $\tau \to \mu \pi \pi$ : tree level diagrams robust handle on LFV
- Constraints from HE: LHC wins for  $\tau \mu!$
- Opposite situation for μe!
- For LFV Higgs and nothing else: LHC bound

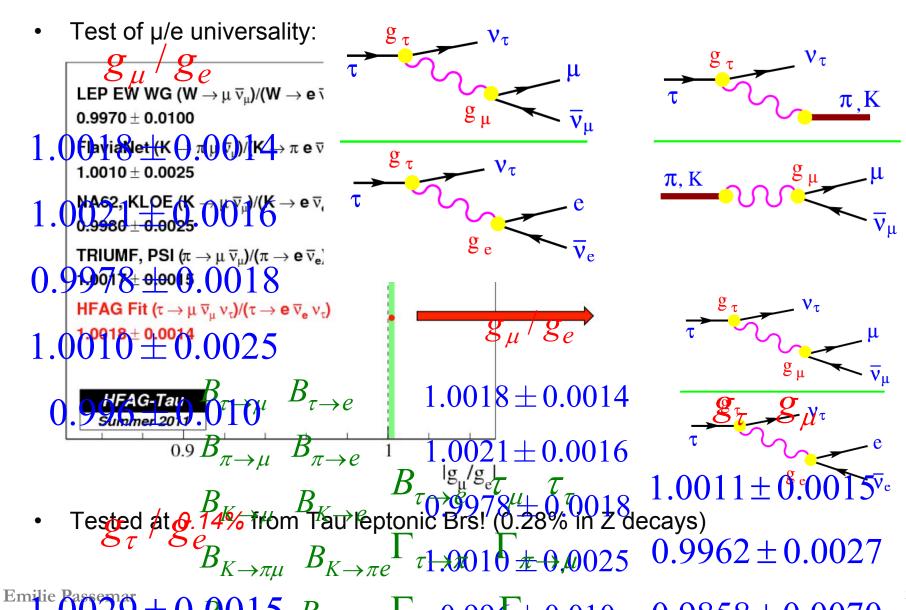



$$BR(\tau \to \mu\pi\pi) < 1.5 \times 10^{-11}$$


#### Hint of New Physics in $h \rightarrow \tau \mu$ ?

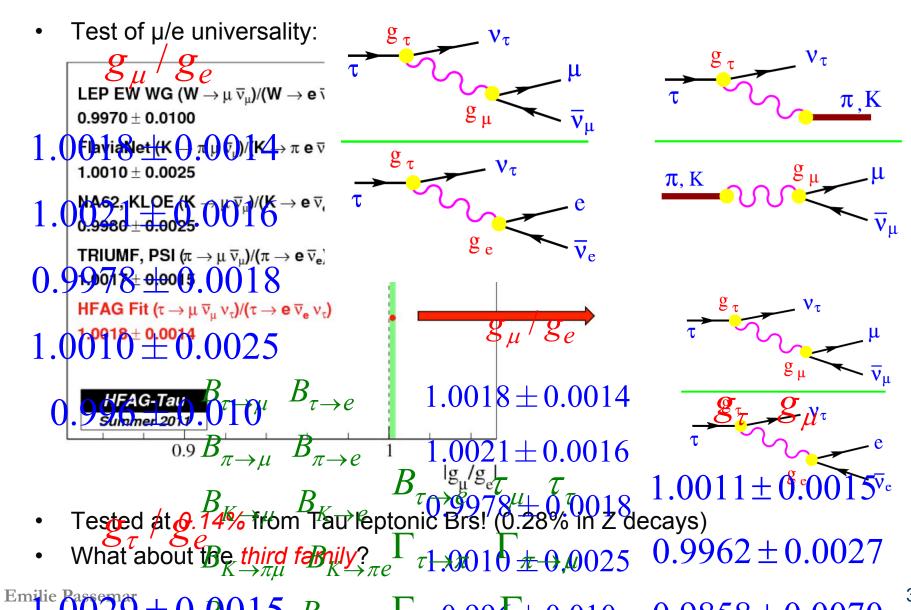
#### CMS'16




## Hint of New Physics in $h \rightarrow \tau \mu$ ?



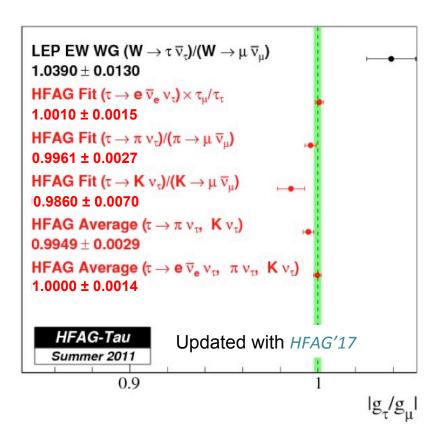


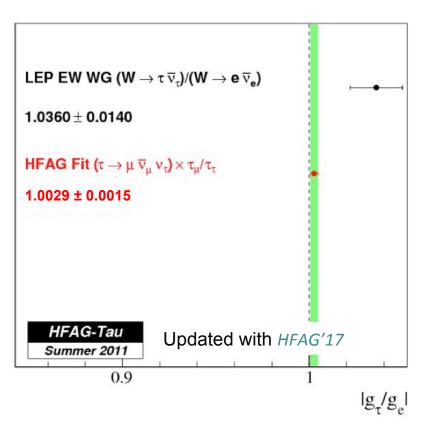

3. Other interesting topics with tau decays

# 3.1 Lepton Universality



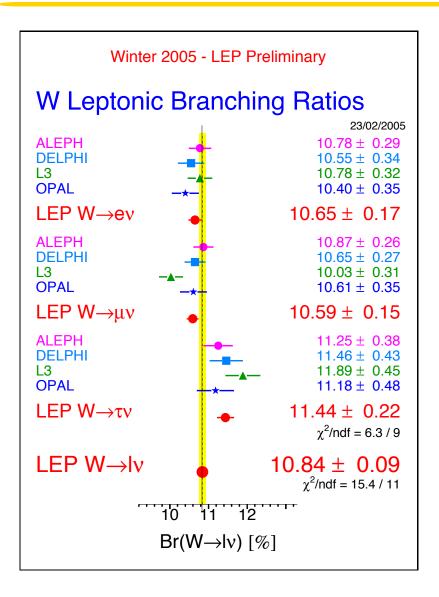
 $\Gamma$  0.00 $\Gamma$  0.010


#### 3.1 Lepton Universality

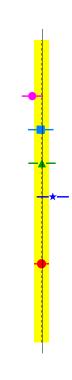



 $\Gamma$  0.00 $\Gamma$  0.010

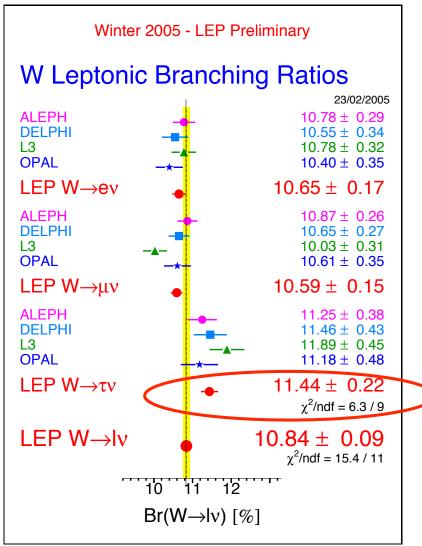
#### 3.1 Lepton Universality


What about the third family?






- Universality tested at 0.15% level and good agreement except for
  - W decay old anomaly
  - B decays See talks in this morning Flavour session


## 3.1 Lepton Flavour Universality anomaly $W \rightarrow \tau \nu_{\tau}$



Old LEP anomaly



## 3.1 Lepton Flavour Universality anomaly $W \rightarrow \tau \nu_{\tau}$



Old LEP anomaly

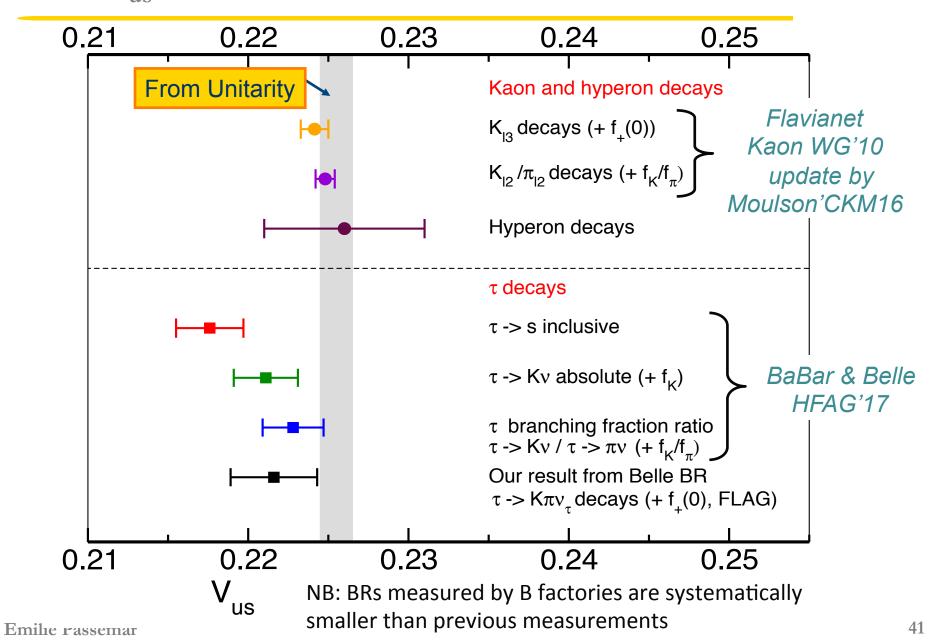
$$R_{\tau\ell}^{W} = \frac{2 \operatorname{BR}(W \to \tau \,\overline{\nu}_{\tau})}{\operatorname{BR}(W \to e \,\overline{\nu}_{e}) + \operatorname{BR}(W \to \mu \,\overline{\nu}_{\mu})} = 1.077(26)$$

2.8σ away from \$M!

New physics?

Some models:

Li & Ma'05, Park'06, Dermisek'08


Try to explain with SM EFT approach with [U(2)xU(1)] flavour symmetry

Very difficu<mark>lt</mark> to explain without modifying any other observables

Filipuzzi, Portoles, Gonzalez-Alonso'12

 Would be great to have another measurement by LHC

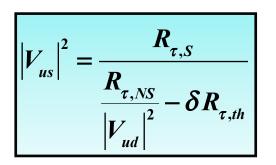
## 3.2 V<sub>us</sub> determination

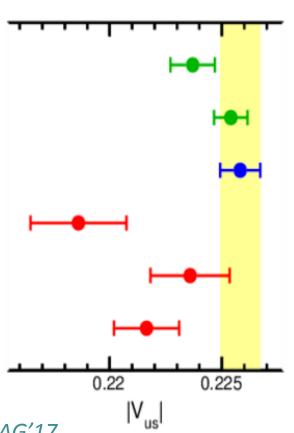


## 3.2 V<sub>us</sub> determination

Longstanding inconsistencies between inclusive  $\tau$  and kaon decays

in extraction of  $V_{us}$ 


Inclusive τ decays:


$$\delta R_{\tau} \equiv \frac{R_{\tau, NS}}{\left|V_{ud}\right|^2} - \frac{R_{\tau, S}}{\left|V_{us}\right|^2}$$

SU(3) breaking quantity, strong dependence in m<sub>s</sub> computed from OPE (L+T) + phenomenology

$$\delta R_{\tau,th} = 0.0242(32)$$

Gamiz et al'07, Maltman'11





K<sub>13</sub>, PDG 2016 0.2237 ± 0.0010

K<sub>12</sub>, PDG 2016 0.2254 ± 0.0007

CKM unitarity, PDG 2016 0.2258 ± 0.0009

 $\tau \rightarrow s$  incl., HFLAV Spring 2017

 $0.2186 \pm 0.0021$ 

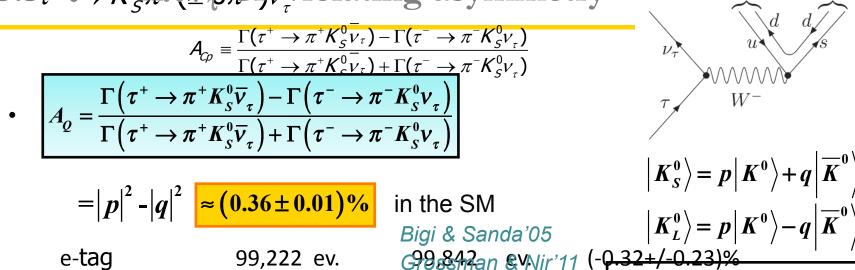
 $\tau \rightarrow \text{Kv} \ / \ \tau \rightarrow \pi \nu, \, \text{HFLAV Spring 2017} \\ 0.2236 \pm 0.0018$ 

τ average, HFLAV Spring 2017 0.2216 ± 0.0015

> HFLAV Spring 2017

HFAG'17

$$R_{\tau,S} = 0.1633(28)$$


 $R_{\tau,NS} = 3.4718(84)$ 

$$\left|V_{ud}\right| = 0.97417(21)$$

$$|V_{us}| = 0.2186 \pm 0.0019_{\text{exp}} \pm 0.0010_{\text{th}}$$

3.10 away from unitarity!





70,369

ev.

Experimental measurement :

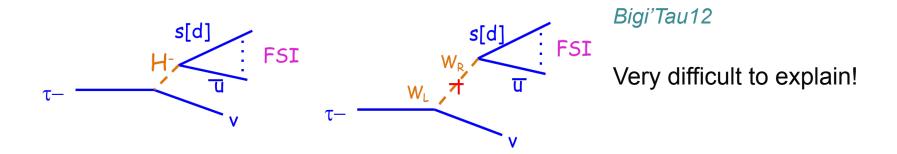
μ –tag

70,233 ev.

$$A_{O \exp} = \left(-0.36 \pm 0.23_{\text{stat}} \pm 0.11_{\text{syst}}\right)\%$$
 from the SM!

 CP violation in the tau decays should be of opposite sign compared to the one in D decays in the SM

Grossman & Nir'11


$$A_D = \frac{\Gamma\left(D^+ \to \pi^+ K_S^0\right) - \Gamma\left(D^- \to \pi^- K_S^0\right)}{\Gamma\left(D^+ \to \pi^+ K_S^0\right) + \Gamma\left(D^- \to \pi^- K_S^0\right)} = \left(-0.54 \pm 0.14\right)\% \quad \text{Belle, Babar, } CLEO, FOCUS$$

43

 $\langle \mathbf{r}_{K} | \mathbf{K}_{SO} \rangle = |\mathbf{p}|_{SO}^{2} - |\mathbf{q}|^{2} \approx 2 \operatorname{Re}(\varepsilon_{K})$ 

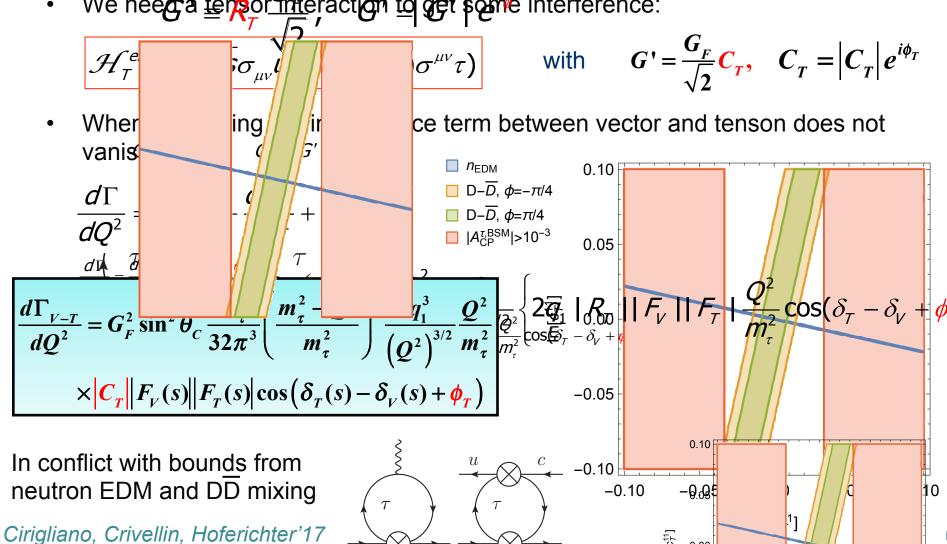
## 3.3 $\tau \rightarrow K\pi V_{\tau}$ CP violating asymmetry

New physics? Charged Higgs, W<sub>L</sub>-W<sub>R</sub> mixings, leptoquarks, tensor interactions (*Devi, Dhargyal, Sinha'14, Cirigliano, Crivellin, Hoferichter'17*)?



 Need to investigate how large can be the prediction in realistic new physics models: it looks like a tensor interaction can explain the effect but in conflict with bounds from neutron EDM and DD mixing

Cirigliano, Crivellin, Hoferichter'17


ight BSM physics?

$$\mathcal{H}_{\tau}^{eff} \equiv G'(S\sigma_{\mu\nu}U)(\nu_{\tau}(1+\gamma_{5})\sigma^{\mu\nu}\tau)$$
3.3  $\tau \to K\pi\nu_{\tau}$  CP violating asymmetry

Devi, Dhargyal, Sinha'14 Cirigliano, Crivellin, Hoferichter'17

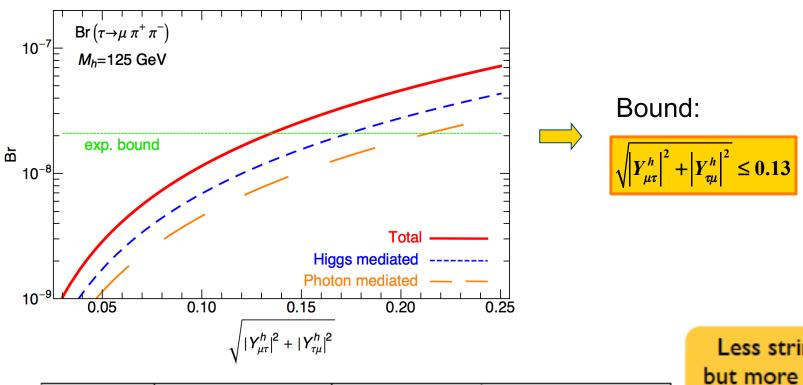
0.00

We need a tensor interaction to get some interference:



## 4. Conclusion and outlook

#### Conclusion and outlook


- Direct searches for new physics at the TeV-scale at LHC by ATLAS and CMS penergy frontier
- Probing new physics orders of magnitude beyond that scale and helping to decipher possible TeV-scale new physics requires to work hard on the intensity and precision frontiers
- Charged leptons and in particular tau physics offer an important spectrum of possibilities:
  - LFV measurement has SM-free signal
  - ightharpoonup Several interesting anomalies: LFU, Vus, CPV in au 
    ightharpoonup K $\pi v_{ au}$
  - Progress towards a better knowledge of hadronic uncertainties
  - New physics models usually strongly correlate the flavours sectors
  - Important experimental activities: Belle, BaBar, LHCb, ATLAS, CMS and more to come: Belle II, HL LHC, etc

A lot of interesting physics remains to be done in the Tau sector!

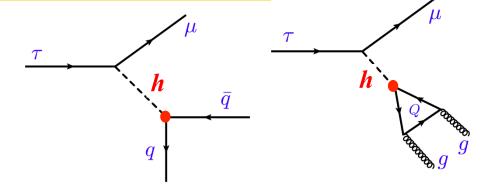
# 5. Back-up

#### **NIC DECAYS** $\Gamma(\tau \to \nu_{\tau} l \overline{\nu}_{l}) = \frac{\nu_{F} l \overline{\nu}_{l}}{1 + 2\nu_{RC}} f(m_{l}/m_{\tau}) \int_{\mathbb{R}^{2}} f(m_{l}^{2}/m_{\tau}^{2}) \int_{\mathbb{R}^{2}} f(m_{l}^{2}/m$ $\frac{V_{\tau} V_{l} V_{l}}{e^{-}, \mu^{-}} \frac{192 \pi^{3}}{\Gamma(f(x))} \frac{18x^{3} - x^{4} - 12x^{2}}{18x^{2} + 8x^{3} - x^{4} - 12x^{2}} \log m_{l}^{2}/m_{\tau}^{2}) \left(1 + \delta_{RC}\right)}{f(x) \frac{92 \pi^{3}}{8x + 8x^{3} - x^{4} - 12x^{2}} \log x$ Inputs from the pr Rac Rac Rates with well-determined 17.95 raent of radiative decays 17.90 0.1790 17.85 「au lifetimes 17.80 0.1785 -17.75 17.70 Belle), m<sub>t</sub> (BesIII) 0.1780 10±705 0.0039 17.65 17.60 → SM **BaBá** $\hat{\mathbf{n}}$ .9**70**6 $\pm$ 0.0039 0.9796 $\pm$ 000039 BaBar '10: 17.95 A. Pich 17.9 $B^{univ} = (17.818 \pm 0.0022)$ 17.85 290 $\tau_{\tau}$ (Belle), $m_{\tau}$ (BesIII) (17.818 + 0.0022)17.80 τ Physics 17.95 Emilie Passemar

#### 3.5 Results



| Process                            | $(\mathrm{BR}\times 10^8)~90\%~\mathrm{CL}$ | $\sqrt{ Y^h_{\mu	au} ^2+ Y^h_{	au\mu} ^2}$ | Operator(s)           |
|------------------------------------|---------------------------------------------|--------------------------------------------|-----------------------|
| $\tau \rightarrow \mu \gamma$      | < 4.4 [88]                                  | < 0.016                                    | Dipole                |
| $\tau \rightarrow \mu \mu \mu$     | < 2.1 [89]                                  | < 0.24                                     | Dipole                |
| $\tau \rightarrow \mu \pi^+ \pi^-$ | < 2.1 [86]                                  | < 0.13                                     | Scalar, Gluon, Dipole |
| $	au  ightarrow \mu  ho$           | < 1.2 [85]                                  | < 0.13                                     | Scalar, Gluon, Dipole |
| $\tau \rightarrow \mu \pi^0 \pi^0$ | $< 1.4 \times 10^3$ [87]                    | < 6.3                                      | Scalar, Gluon         |


Less stringent but more robust handle on LFV Higgs couplings

#### 3.5 What if $\tau \to \mu(e)\pi\pi$ observed? Reinterpreting Celis, Cirigliano, E.P'14

Talk by J. Zupan

@ KEK-FF2014FALL

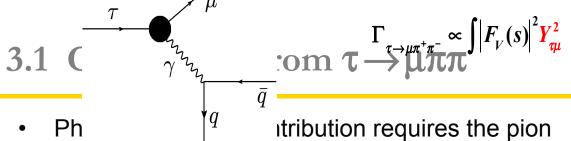
•  $\tau \rightarrow \mu(e)\pi\pi$  sensitive to  $Y_{\mu\tau}$  but also to  $Y_{u,d,s}!$ 



- $Y_{u,d,s}$  poorly bounded
- For Y<sub>u,d,s</sub> at their SM values :

$$\overline{Br(\tau \to \mu \pi^+ \pi^-)} < 1.6 \times 10^{-11}, \overline{Br(\tau \to \mu \pi^0 \pi^0)} < 4.6 \times 10^{-12}$$

$$Br(\tau \to e \pi^+ \pi^-) < 2.3 \times 10^{-10}, Br(\tau \to e \pi^0 \pi^0) < 6.9 \times 10^{-11}$$


• But for  $Y_{u,d,s}$  at their upper bound:

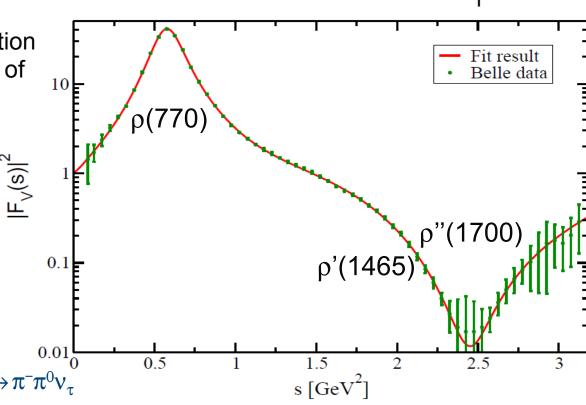
$$Br(\tau \to \mu \pi^+ \pi^-) < 3.0 \times 10^{-8}, Br(\tau \to \mu \pi^0 \pi^0) < 1.5 \times 10^{-8}$$
  
 $Br(\tau \to e \pi^+ \pi^-) < 4.3 \times 10^{-7}, Br(\tau \to e \pi^0 \pi^0) < 2.1 \times 10^{-7}$ 

below present experimental limits:

• If discovered  $\longrightarrow$  among other things *upper limit* on  $Y_{u,d,s}$ !

Interplay between high-energy and low-energy constraints!




Ph | <sup>q</sup> vector form factor:

$$\langle \pi^{+}(p_{\pi^{+}})\pi^{-}(p_{\pi^{-}})|\frac{1}{2}(\bar{u}\gamma^{\alpha}u - \bar{d}\gamma^{\alpha}d)|0\rangle \equiv F_{V}(s)(p_{\pi^{+}} - p_{\pi^{-}})^{\alpha}$$

 Dispersive parametrization following the properties of analyticity and unitarity of the Form Factor

Gasser, Meißner 91 Guerrero, Pich 97 Oller, Oset, Palomar 01 Pich, Portolés 08 Gómez Dumm&Roig 13

Determined from a fit 0.01 to the Belle data on τ<sup>-</sup> → π<sup>-</sup>π<sup>0</sup>ν<sub>τ</sub>

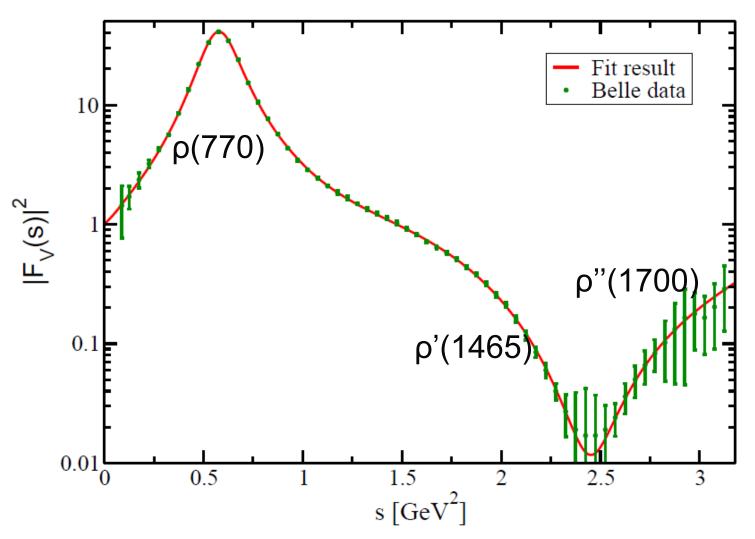


 $\bar{q}$ 

Celis, Cirigliano, E.P.'14

#### Determination of F<sub>V</sub>(s)

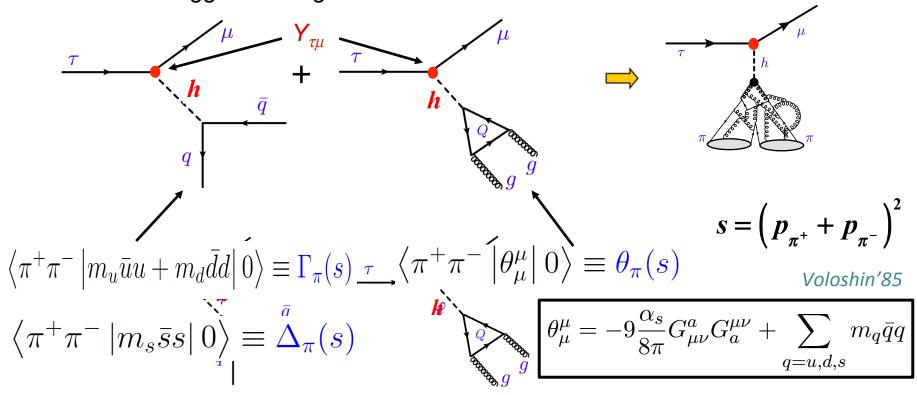
- Vector form factor
  - > Precisely known from experimental measurements  $e^+e^- \to \pi^+\pi^-$  and  $\tau^- \to \pi^0\pi^-\nu_{\tau}$  (isospin rotation)
  - $\triangleright$  Theoretically: Dispersive parametrization for  $F_V(s)$


Guerrero, Pich'98, Pich, Portolés'08
Gomez, Roig'13

$$F_{V}(s) = \exp\left[\frac{\lambda_{V}'}{m_{\pi}^{2}} + \frac{1}{2}\left(\frac{\lambda_{V}'' - \lambda_{V}'^{2}}{m_{\pi}^{2}}\right)\left(\frac{s}{m_{\pi}^{2}}\right)^{2} + \frac{s^{3}}{\pi}\int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{3}} \frac{\phi_{V}(s')}{\left(s'^{2} + s - i\varepsilon\right)}\right]$$

Extracted from a model including 3 resonances  $\rho(770)$ ,  $\rho'(1465)$  and  $\rho''(1700)$  fitted to the data

> Subtraction polynomial + phase determined from a *fit* to the Belle data  $\tau^- \to \pi^0 \pi^- \nu_\tau$ 


#### Determination of $F_V(s)$



Determination of  $F_V(s)$  thanks to precise measurements from Belle!

#### 3.1 Constraints from $\tau \rightarrow \mu \pi \pi$

Tree level Higgs exchange



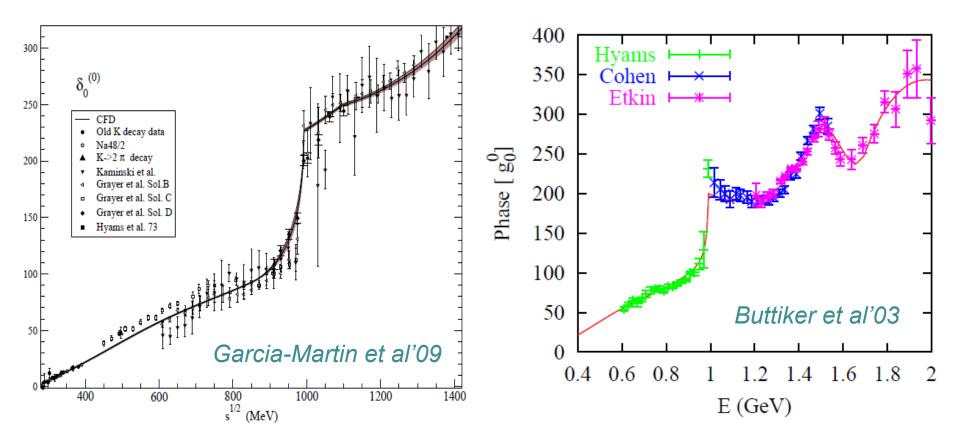
$$\frac{d\Gamma(\tau \to \mu \pi^{+} \pi^{-})}{d\sqrt{s}} = \frac{(m_{\tau}^{2} - s)^{2} \sqrt{s - 4m_{\pi}^{2}}}{256\pi^{3} m_{\tau}^{3}} \frac{(|Y_{\tau\mu}^{h}|^{2} + |Y_{\mu\tau}^{h}|^{2})}{M_{h}^{4} v^{2}} |\mathcal{K}_{\Delta} \Delta_{\pi}(s) + \mathcal{K}_{\Gamma} \Gamma_{\pi}(s) + \mathcal{K}_{\theta} \theta_{\pi}(s)|^{2}}{f(y_{g}^{h})}$$
separ

55

## Determination of the form factors: $\Gamma_{\pi}(s)$ , $\Delta_{\pi}(s)$ , $\theta_{\pi}(s)$

No experimental data for the other FFs — Coupled channel analysis up to √s~1.4 GeV Inputs: I=0, S-wave  $\pi\pi$  and KK data

Donoghue, Gasser, Leutwyler'90 Moussallam'99 Daub et al'13


Unitarity:

disc 
$$\begin{bmatrix} \pi \\ \pi \end{bmatrix} = \begin{bmatrix} \pi \\ \pi \end{bmatrix} + \begin{bmatrix} K \\ K \end{bmatrix} \begin{bmatrix} K \\ \pi \end{bmatrix}$$

## Determination of the form factors : $\Gamma_{\pi}(s)$ , $\Delta_{\pi}(s)$ , $\theta_{\pi}(s)$

Celis, Cirigliano, E.P.'14

• Inputs :  $\pi\pi \to \pi\pi$ , KK



- A large number of theoretical analyses *Descotes-Genon et al'01, Kaminsky et al'01, Buttiker et al'03, Garcia-Martin et al'09, Colangelo et al.'11* and all agree
- 3 inputs:  $\delta_{\pi}(s)$ ,  $\delta_{K}(s)$ ,  $\eta$  from *B. Moussallam*  $\Longrightarrow$  reconstruct *T* matrix

57

## 3.4.4 Determination of the form factors : $\Gamma_{\pi}(s)$ , $\Delta_{\pi}(s)$ , $\theta_{\pi}(s)$

General solution:

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_K(s) \end{pmatrix} = \begin{pmatrix} C_1(s) & D_1(s) \\ C_2(s) & D_2(s) \end{pmatrix} \begin{pmatrix} P_F(s) \\ Q_F(s) \end{pmatrix}$$
 Canonical solution Polynomial determined from a matching to ChPT + lattice

• Canonical solution found by solving the dispersive integral equations iteratively starting with Omnès functions X(s) = C(s), D(s)

$$\operatorname{Im} X_n^{(N+1)}(s) = \sum_{m=1}^2 \operatorname{Re} \left\{ T_{nm}^* \sigma_m(s) X_m^{(N)} \right\} \longrightarrow \operatorname{Re} X_n^{(N+1)}(s) = \frac{1}{\pi} \int_{4m_\pi^2}^{\infty} \frac{ds'}{s' - s} \operatorname{Im} X_n^{(N+1)}(s)$$

#### Determination of the polynomial

General solution

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_K(s) \end{pmatrix} = \begin{pmatrix} C_1(s) & D_1(s) \\ C_2(s) & D_2(s) \end{pmatrix} \begin{pmatrix} P_F(s) \\ Q_F(s) \end{pmatrix}$$

• Fix the polynomial with requiring  $F_p(s) \rightarrow 1/s$  (Brodsky & Lepage) + ChPT:

At LO in ChPT:

$$\begin{array}{lll} M_{\pi^+}^2 = \left(m_{\rm U} + m_{\rm d}\right) B_0 + O(m^2) \\ M_{K^+}^2 = \left(m_{\rm U} + m_{\rm s}\right) B_0 + O(m^2) & \longrightarrow \\ M_{K^0}^2 = \left(m_{\rm d} + m_{\rm s}\right) B_0 + O(m^2) & \longrightarrow \\ Q_{\Gamma}(s) = \frac{2}{\sqrt{3}} \Gamma_K(0) = \frac{1}{\sqrt{3}} M_{\pi}^2 + \cdots \\ P_{\Delta}(s) = \Delta_{\pi}(0) = 0 + \cdots \\ Q_{\Delta}(s) = \frac{2}{\sqrt{3}} \Delta_K(0) = \frac{2}{\sqrt{3}} \left(M_K^2 - \frac{1}{2} M_{\pi}^2\right) + \cdots \end{array}$$

#### Determination of the polynomial

General solution

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_K(s) \end{pmatrix} = \begin{pmatrix} C_1(s) & D_1(s) \\ C_2(s) & D_2(s) \end{pmatrix} \begin{pmatrix} P_F(s) \\ Q_F(s) \end{pmatrix}$$

At LO in ChPT:

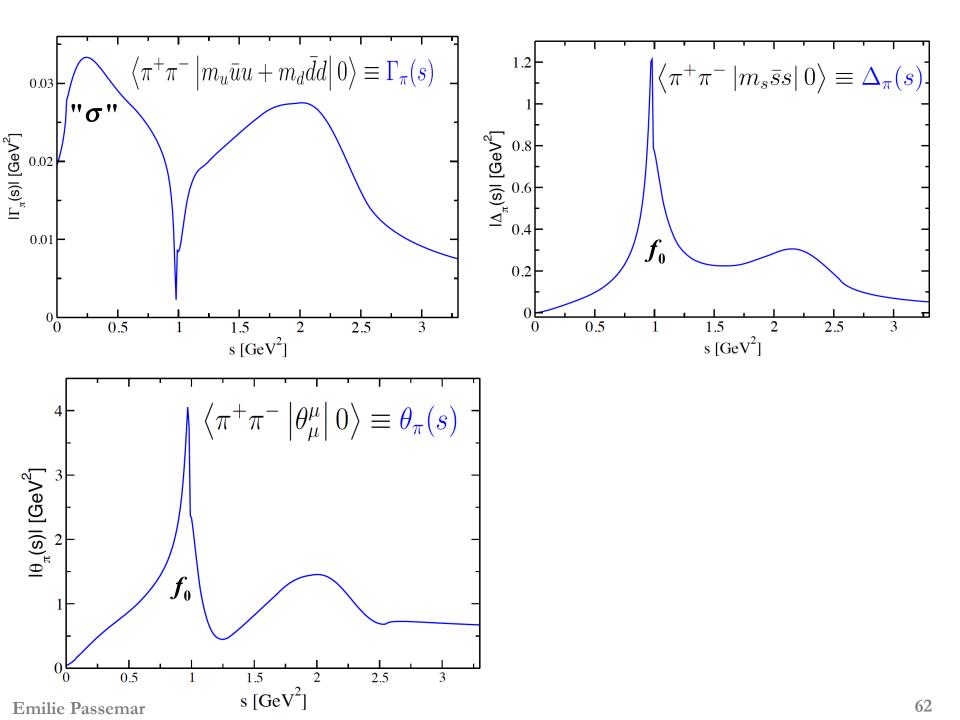
$$\begin{array}{lll} M_{\pi^+}^2 = \left(m_{\rm u} + m_{\rm d}\right) B_0 + O(m^2) \\ M_{K^+}^2 = \left(m_{\rm u} + m_{\rm s}\right) B_0 + O(m^2) \\ M_{K^0}^2 = \left(m_{\rm d} + m_{\rm s}\right) B_0 + O(m^2) \end{array} \Longrightarrow \begin{array}{lll} P_{\Gamma}(s) & = & \Gamma_{\pi}(0) = M_{\pi}^2 + \cdots \\ Q_{\Gamma}(s) & = & \frac{2}{\sqrt{3}} \Gamma_K(0) = \frac{1}{\sqrt{3}} M_{\pi}^2 + \cdots \\ P_{\Delta}(s) & = & \Delta_{\pi}(0) = 0 + \cdots \\ Q_{\Delta}(s) & = & \frac{2}{\sqrt{3}} \Delta_K(0) = \frac{2}{\sqrt{3}} \left(M_K^2 - \frac{1}{2} M_{\pi}^2\right) + \cdots \end{array}$$

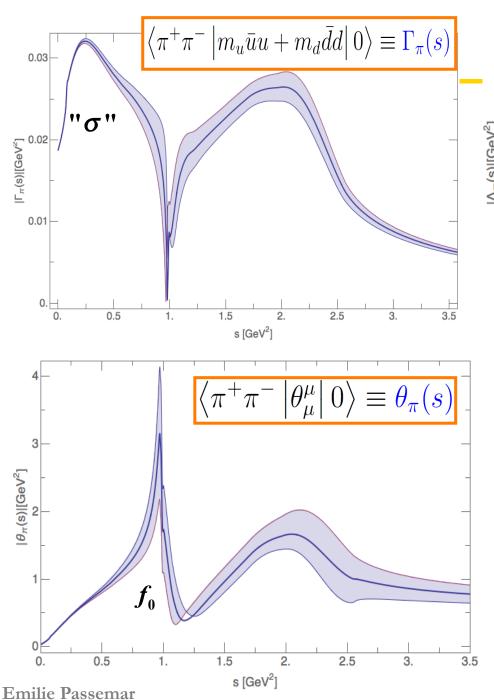
Problem: large corrections in the case of the kaons!
 Use lattice QCD to determine the SU(3) LECs

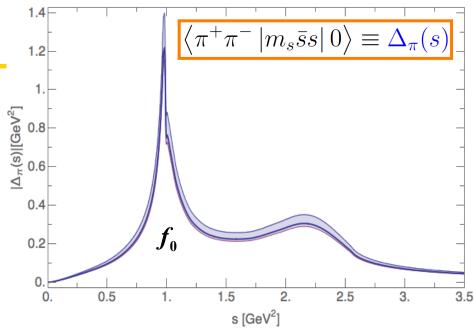
$$\Gamma_K(0) = (0.5 \pm 0.1) \ M_{\pi}^2$$

$$\Delta_K(0) = 1_{-0.05}^{+0.15} \left( M_K^2 - 1/2M_{\pi}^2 \right)$$

Dreiner, Hanart, Kubis, Meissner'13 Bernard, Descotes-Genon, Toucas'12

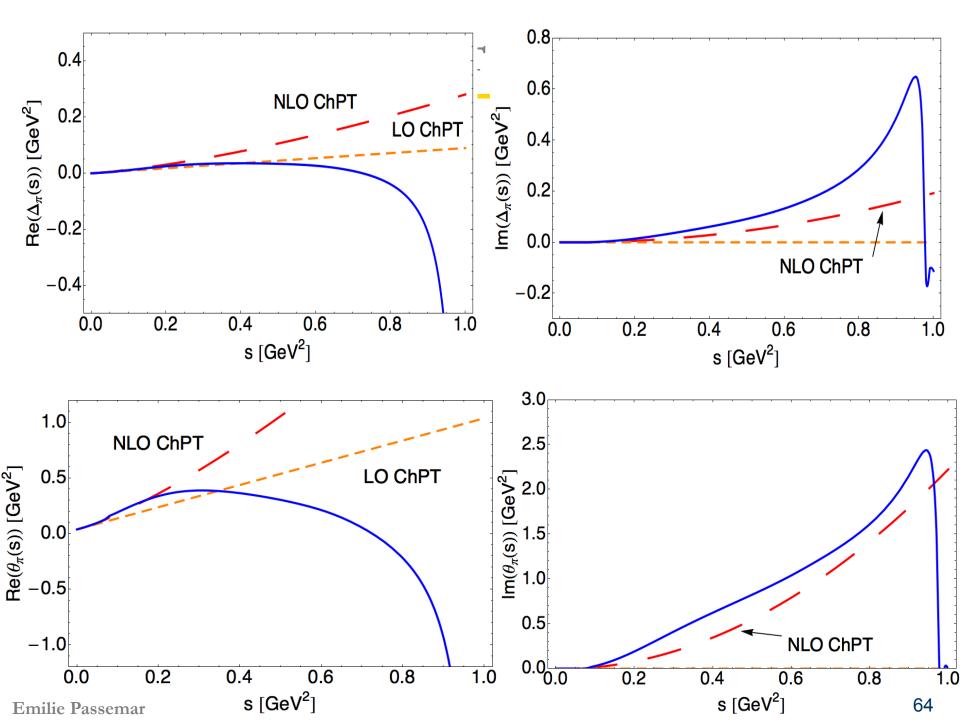

#### Determination of the polynomial


General solution


$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_K(s) \end{pmatrix} = \begin{pmatrix} C_1(s) & D_1(s) \\ C_2(s) & D_2(s) \end{pmatrix} \begin{pmatrix} P_F(s) \\ Q_F(s) \end{pmatrix}$$

- For  $\theta_P$  enforcing the asymptotic constraint is not consistent with ChPT The unsubtracted DR is not saturated by the 2 states
  - Relax the constraints and match to ChPT

$$\begin{array}{lcl} P_{\theta}(s) & = & 2M_{\pi}^2 + \left(\dot{\theta}_{\pi} - 2M_{\pi}^2 \dot{C}_1 - \frac{4M_K^2}{\sqrt{3}} \dot{D}_1\right) s \\ \\ Q_{\theta}(s) & = & \frac{4}{\sqrt{3}} M_K^2 + \frac{2}{\sqrt{3}} \left(\dot{\theta}_K - \sqrt{3} M_{\pi}^2 \dot{C}_2 - 2M_K^2 \dot{D}_2\right) s \end{array}$$








#### • Uncertainties:

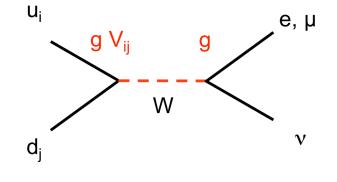
- Varying s<sub>cut</sub> (1.4 GeV<sup>2</sup> 1.8 GeV<sup>2</sup>)
- Varying the matching conditions
- T matrix inputs



What about the *third family*?

$$\left|g_{ au}/g_{\mu}\right|$$

$$B_{\tau \to e} \ \tau_{\mu} / \tau_{\tau}$$
 1.0011±0.0015  
 $\Gamma_{\tau \to \pi} / \Gamma_{\pi \to \mu}$  0.9962±0.0027  
 $\Gamma_{\tau \to K} / \Gamma_{K \to \mu}$  0.9858±0.0070  
 $B_{W \to \tau} / B_{W \to \mu}$  1.034±0.013


$$B_{\pi o \mu} \ B_{\pi o e} \ 1.0021 \pm 0.0016$$
 $B_{K o \mu} \ B_{K o e} \ 0.9978 \pm 0.0018$ 
 $B_{K o \pi \mu} \ B_{K o \pi e} \ 1.0010 \pm 0.0025$ 
 $B_{W o \mu} \ B_{W o e} \ 0.996 \pm 0.010$ 
updated on HFAG'17

- Universality tested at 0.15% level and good agreement except for
  - W decay old anomaly
  - B decays

# 2.2 Paths to $V_{ud}$ and $V_{us}$

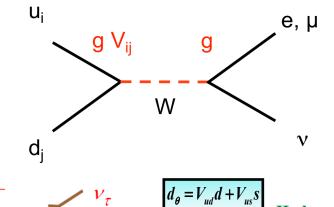
From kaon, pion, baryon and nuclear decays

| V <sub>ud</sub> | $ \begin{array}{c} 0^+ \rightarrow 0^+ \\ \pi^{\pm} \rightarrow \pi^0 \text{ev}_e \end{array} $ | n → pev <sub>e</sub>        | $\pi \rightarrow l_{V_l}$ |
|-----------------|-------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|
| V <sub>us</sub> | $K \rightarrow \pi l v_l$                                                                       | $\Lambda \rightarrow pev_e$ | $K \rightarrow lv_l$      |



 $\overline{d_{\theta}} = \overline{V_{ud}d} + V_{us}s$ 

**Hadrons** 


From τ decays (crossed channel)

| $V_{ud}$        | $\tau \rightarrow \pi \pi V_{\tau}$ | $\tau \rightarrow \pi v_{\tau}$ | $\tau \rightarrow h_{NS} V_{\tau}$                                 |
|-----------------|-------------------------------------|---------------------------------|--------------------------------------------------------------------|
| V <sub>us</sub> | $\tau \rightarrow K\pi v_{\tau}$    | $\tau 	o K v_{\tau}$            | $	au  ightarrow 	extbf{h}_{	extsf{S}} 	extsf{V}_{	au}$ (inclusive) |

## 2.2 Paths to $V_{ud}$ and $V_{us}$

From kaon, pion, baryon and nuclear decays

| V <sub>ud</sub> | $0^+ \rightarrow 0^+$ $\pi^{\pm} \rightarrow \pi^0 \text{ev}_{\text{e}}$ | n → pev <sub>e</sub>        | $\pi \rightarrow lv_l$  |
|-----------------|--------------------------------------------------------------------------|-----------------------------|-------------------------|
| V <sub>us</sub> | $K \rightarrow \pi l v_l$                                                | $\Lambda \rightarrow pev_e$ | $K \rightarrow I_{V_I}$ |



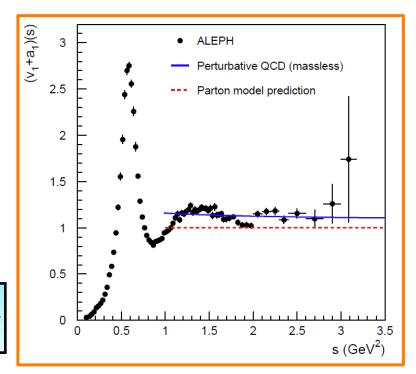
**Hadrons** 

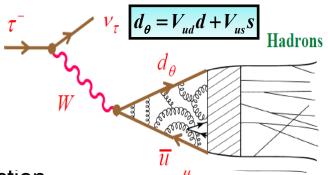
From τ decays (crossed channel)

| V <sub>ud</sub> | $\tau \rightarrow \pi \pi \nu_{\tau}$ | $\tau \to \pi \nu_{\tau}$ | $	au  ightarrow h_{NS} V_{	au}$                          |
|-----------------|---------------------------------------|---------------------------|----------------------------------------------------------|
| V <sub>us</sub> | $\tau \to K\pi v_{\tau}$              | $	au 	o 	ext{KV}_{	au}$   | $	au  ightarrow 	ext{h}_{	ext{S}} 	au_{	au}$ (inclusive) |

## 2.3 V<sub>118</sub> from inclusive measurement

 $d_{\theta} = V_{ud}d + V_{us}s$ 


Davier et al'13


- Tau, the only lepton heavy enough to decay into hadrons  $v_1(s) = 2\pi \operatorname{Im} \Pi_{ud,V}^{(l)}(s)$
- $m_{\tau} \sim 1.77 \text{GeV} > \Lambda_{OCD}$ → use perturbative tools: OPE...
- Inclusive  $\tau$  decays  $\tau \to (ud, us)v_{\tau}^{(0+1)}(S)$  fund. SM parameters  $(\alpha_s(m_{\tau}), |V_{us}|, m_s)$
- We consider  $\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons}_{S=0})$

$$\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons}_{S \neq 0})$$

- ALEPH and OPAL at LEP measured with precision not only the total BRs but also the energy distribution of the hadronic system huge QCD activity!

Observable studied: 
$$R_{\tau} = \frac{\Gamma(\tau^{-} \to v_{\tau} + \text{hadrons})}{\Gamma(\tau^{-} \to v_{\tau}e^{-}v_{e})}$$





• 
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \overline{\nu}_e)} \approx N_c$$
 parton model prediction

$$\frac{\Gamma\left(\tau \stackrel{R}{\rightarrow} v_{\tau} + hadrons\right)}{\Gamma\left(\tau \stackrel{R}{\rightarrow} v_{\tau} + hadrons\right)} \approx |V_{ud}|^{2} N_{C} + |V_{us}|^{2} N_{C}$$

$$\approx N_{C}$$

$$= R_{\tau}^{S} \stackrel{|V_{us}|^{2}}{|V_{ud}|} R_{\tau}^{S} R_{\tau}^{S} N_{C}$$

$$N_{C}|V_{ud}|^{2} N_{C} |V_{us}|^{2} \approx 2.85 + 0.15$$

$$\frac{\left|V_{us}\right|^{2}}{\left|V_{us}\right|^{2}} \approx \frac{R_{\tau}^{S \neq 0}}{R_{\tau}^{S = 0}} \qquad \left|V_{us}\right|^{2}$$

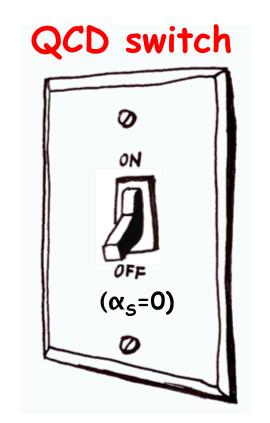
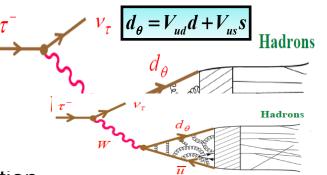
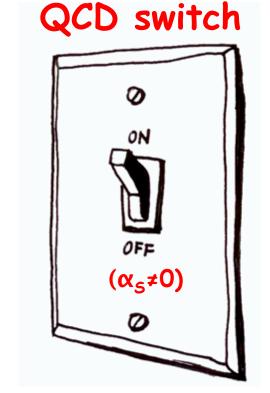



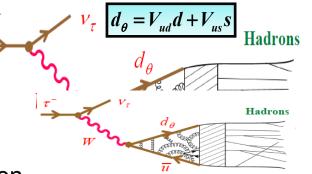

Figure from M. González Alonso'13




• 
$$R_{\tau} \equiv \frac{\Gamma\left(\tau^{-} \to v_{\tau} + \text{hadrons}\right)}{\Gamma\left(\tau^{-} \to v_{\tau} e^{-} \overline{v_{e}}\right)} \approx N_{c}$$
 parton model prediction

$$\frac{\Gamma\left(\tau \stackrel{R}{\Rightarrow} v_{\tau} \stackrel{=}{+} \frac{R^{NS}}{hadrons} + R^{S} \stackrel{\approx}{\Rightarrow} |V_{ud}|^{2} N_{C} + |V_{us}|^{2} N_{C}}{\Gamma\left(\tau \rightarrow v_{\tau} e^{-} v_{e}\right)} \approx N_{C}$$

$$= R_{\tau}^{S=0} = R_{\tau}^{S=0} = N_{c}^{S=0} = N_{c}^{S=0}$$


$$\frac{\left|V_{us}\right|^{2}}{\left|V_{us}\right|^{2}} \approx \frac{R_{\tau}^{S \neq 0}}{R_{\tau}^{S = 0}}$$

$$\left|V_{us}\right|^2$$

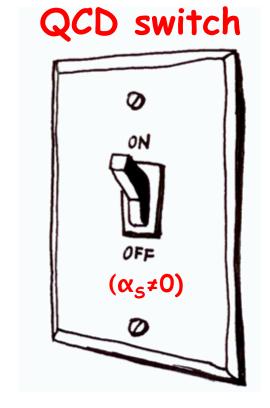


$$S=0 \approx N_C |V_{ud}|^2 + O(\alpha_s)$$

$$\alpha_{s}$$



• 
$$R_{\tau} \equiv \frac{\Gamma\left(\tau^{-} \to v_{\tau} + \text{hadrons}\right)}{\Gamma\left(\tau^{-} \to v_{\tau} e^{-} \overline{v_{e}}\right)} \approx N_{c}$$
 parton model prediction


$$\frac{\Gamma\left(\tau \stackrel{R}{\Rightarrow} v_{\tau} \stackrel{R}{+} \frac{R_{o}^{NS} + R_{o}^{S}}{hadronS}\right) |V_{ud}|^{2} N_{c} + |V_{us}|^{2} N_{c}}{\Gamma\left(\tau \rightarrow v_{\tau} e^{-} v_{e}\right)} \approx N_{c}$$

$$= R_{\tau}^{S = E} + R_{\tau}^{sianentally} = N_{C} V_{ud}^{R} + \frac{1 - B_{e} - B_{\mu}}{N_{C} |B_{\mu s}|^{2}} = 2.83 + 0.13086$$

Due to QCD corrections: 
$$R_{\tau} = |V_{ud}|^2 N_C + |V_{us}|^2 N_C + O(\alpha_S)$$

$$\frac{|V_{us}|^2}{|V_{us}|^2} \approx \frac{R_{\tau}^{S \neq 0}}{R_{\tau}^{S = 0}}$$

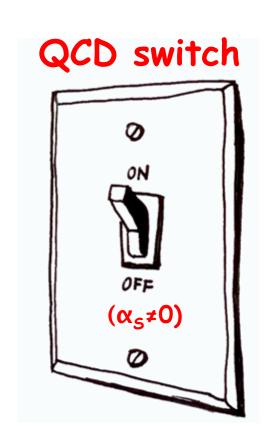
$$|V_{us}|^2$$



$$S=0 \approx N_C |V_{ud}|^2 + O(\alpha_s)$$

$$\alpha_{s}$$

From the measurement of the spectral functions, extraction of  $\alpha_{\rm S}$ ,  $|V_{\rm us}|$ 

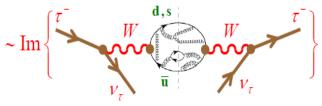

$$\frac{\mathbf{R}_{\tau} \equiv \frac{\Gamma(\tau^{-} \rightarrow v_{\tau} + \mathbf{hadrons})}{\Gamma(\tau \rightarrow v_{\tau} + hadrons)} \approx N_{C}}{\Gamma(\tau \rightarrow v_{\tau} + hadrons)} \approx N_{C}$$
naïve QCD prediction
$$\frac{\Gamma(\tau \rightarrow v_{\tau} + hadrons)}{\Gamma(\tau \rightarrow v_{\tau} e^{-} v_{e})} \approx N_{C}$$

$$R_{\tau}^{NS} = \text{Extraction of the strong coupling constant} + N_{C} |V_{us}| \approx 2.85 + 0.15$$

$$R_{\tau}^{NS} = |V_{ud}|^{2} N_{C} + O(\alpha_{S}) \qquad \alpha_{S}$$
measured calculated

$$\frac{\left|V_{us}\right|^{2}}{\left|V_{ud}\right|^{2}} \approx \frac{R_{\tau}^{S \neq 0}}{R_{\tau}^{S = 0}} \text{ mination of } V_{us} : \frac{\left|V_{us}\right|^{2}}{\left|V_{ud}\right|^{2}} = \frac{R_{\tau}^{S}}{R_{\tau}^{NS}} + O\left(\alpha_{s}^{us}\right)^{2}$$

$$\frac{\left|V_{us}\right|^{2}}{\left|V_{ud}\right|^{2}} = \frac{R_{\tau}^{S}}{R_{\tau}^{NS}} + O\left(\frac{V}{\alpha_{S}^{US}}\right)$$




 $S=0 \approx NV$  and if c = 0 in the lest accuracy

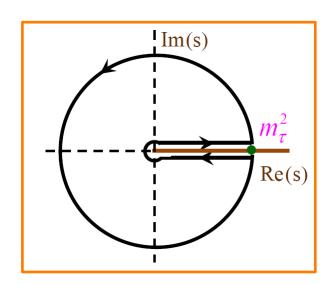
#### 2.5 Calculation of the QCD corrections

• Calculation of  $R_{\tau}$ :

$$R_{\tau}(m_{\tau}^{2}) = 12\pi S_{EW} \int_{0}^{m_{\tau}^{2}} \frac{ds}{m_{\tau}^{2}} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left[ \left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \operatorname{Im} \Pi^{(1)}(s + i\varepsilon) + \operatorname{Im} \Pi^{(0)}(s + i\varepsilon) \right]$$



Braaten, Narison, Pich'92


- Analyticity: Π is analytic in the entire complex plane except for s real positive
  - Cauchy Theorem

$$R_{\tau}(m_{\tau}^{2}) = 6i\pi S_{EW} \oint_{|s|=m_{\tau}^{2}} \frac{ds}{m_{\tau}^{2}} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left[ \left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \Pi^{(1)}(s) + \Pi^{(0)}(s) \right]$$

We are now at sufficient energy to use OPE:

$$\Pi^{(J)}(s) = \sum_{D=0,2,4...} \frac{1}{(-s)^{D/2}} \sum_{\dim O=D} C^{(J)}(s,\mu) \left\langle O_D(\mu) \right\rangle$$
Wilson coefficients

Operators



μ: separation scale between short and long distances

### 2.5 Calculation of the QCD corrections

Braaten, Narison, Pich'92

• Calculation of  $R_{\tau}$ :

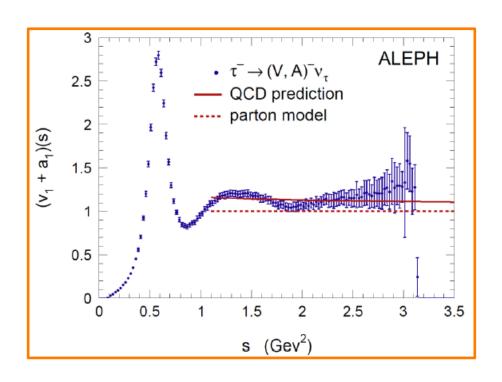
$$\left| R_{\tau} \left( m_{\tau}^{2} \right) = N_{C} S_{EW} \left( 1 + \delta_{P} + \delta_{NP} \right) \right|$$

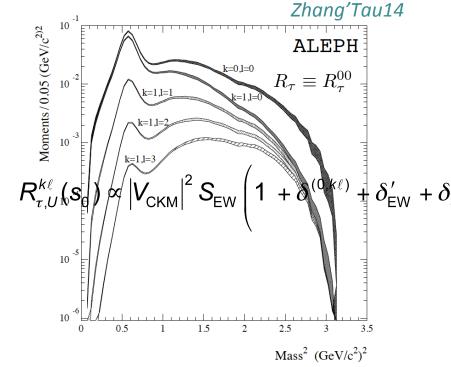
- Electroweak corrections:  $S_{EW} = 1.0201(3)$  Marciano & Sirlin'88, Braaten & Li'90, Erler'04
- Perturbative part (D=0):  $\delta_P = a_\tau + 5.20 \ a_\tau^2 + 26 \ a_\tau^3 + 127 \ a_\tau^4 + ... \approx \frac{20\%}{\pi}$   $a_\tau = \frac{\alpha_s(m_\tau)}{\pi}$

Baikov, Chetyrkin, Kühn'08

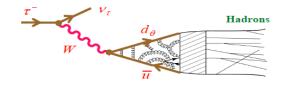
- D=2: quark mass corrections, neglected for  $R_{\tau}^{NS}$  ( $\propto m_u, m_d$ ) but not for  $R_{\tau}^{S}$  ( $\propto m_s$ )
- D ≥ 4: Non perturbative part, not known, fitted from the data
   Use of weighted distributions

## 2.5 Calculation of the QCD corrections


Le Diberder&Pich'92


D ≥ 4: Non perturbative part, not known, fitted from the data

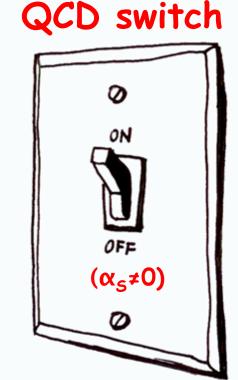
Use of weighted distributions


Exploit shape of the spectral functions to obtain additional experimental information

$$R_{\tau,U}^{k\ell}(s_0) = \int_0^{s_0} ds \left(1 - \frac{s}{s_0}\right)^k \left(\frac{s}{s_0}\right)^\ell \frac{dR_{\tau,U}(s_0)}{ds}$$






# 2.5 Inclusive determination of $V_{us}$



• With QCD on: 
$$\frac{|V_{us}|^{2}}{|V_{ud}|^{2}} = \frac{R_{\tau}^{S}}{R_{\tau}^{NS}} + O(\alpha_{S})$$
• With QCD on: 
$$\frac{|V_{us}|^{2}}{|V_{ud}|^{2}} = \frac{R_{\tau}^{S}}{R_{\tau}^{NS}} + O(\alpha_{S})$$
•  $N_{C}$ 
• Use OPE: 
$$\frac{|V_{ud}|^{2}}{|V_{ud}|^{2}} = N_{C} S_{EW} |V_{ud}|^{2} (1 + \delta_{P} + \delta_{NP}^{ud})$$
•  $N_{C}$ 
•

$$\frac{\left|V_{us}\right|^{2}}{\left|V_{s}\right|^{2}} \approx \frac{R}{R} \delta R_{\tau} \equiv \frac{R_{\tau,NS}}{\left|V_{s}\right|^{2}} - \frac{R_{\tau,S}}{\left|V_{s}\right|^{2}}$$

 $\frac{\left|V_{us}\right|^{2}}{\left|V_{ud}\right|^{2}} \approx \frac{R}{R} \delta R_{\tau} = \frac{R_{\tau,NS}}{\left|V_{ud}\right|^{2}} - \frac{R_{\tau,S}}{\left|V_{us}\right|^{2}}$   $SU(3) breaking quantity, strong dependence in <math>V_{NS}$  computed from OPE (L+T) + phenomenology



$$\delta R_{\tau,th} = 0.0242(32)$$

$$\delta R_{\tau,th} = 0.0242(32) \qquad \text{Gamiz et al'07, Maltman'11}$$

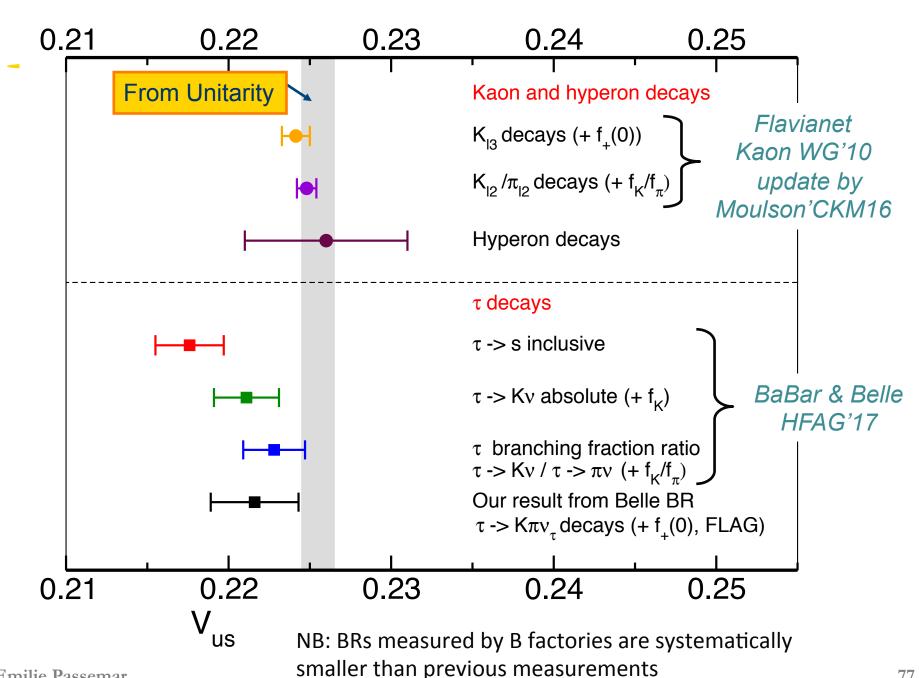
$$S=0$$

$$|V_{us}|^2 = \frac{R_{\tau,S}}{|V_{ud}|^2} - \delta R_{\tau,th}$$

$$|V_{us}| = 0.1633(28)$$

$$|V_{us}| = 0.2186 \pm 0.0019_{\text{exp}} \pm 0.0010_{\text{th}}$$

$$|V_{ud}| = 0.97417(21)$$


$$|V_{ud}| = 0.97417(21)$$

$$|V_{ud}| = 0.97417(21)$$

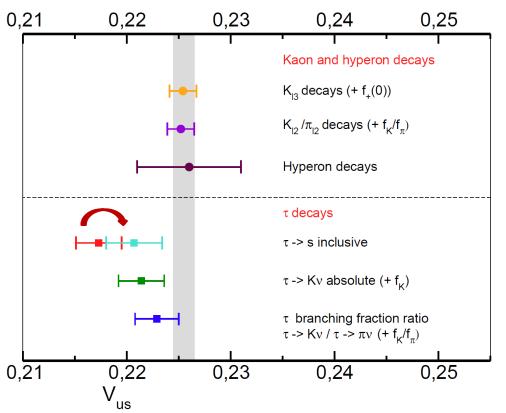
HFAG'17

$$R_{\tau,S} = 0.1633(28)$$
 $R_{\tau,NS} = 3.4718(84)$ 
 $|V_{ud}| = 0.97417(21)$ 

$$|V_{us}| = 0.2186 \pm 0.0019_{\text{exp}} \pm 0.0010_{\text{th}}$$



# 2.6 $V_{us}$ using info on Kaon decays and $\tau \to K\pi\nu_{\tau}$


| Branching fraction                                             | HFAG Winter 2012 fit                | )12 fit   |                       |
|----------------------------------------------------------------|-------------------------------------|-----------|-----------------------|
| $\Gamma_{10} = K^- \nu_{	au}$                                  | $(0.6955 \pm 0.0096) \cdot 10^{-2}$ | $10^{-2}$ | $(0.713 \pm 0.003)\%$ |
| $\Gamma_{16} = K^- \pi^0 \nu_\tau$                             |                                     | •         | $(0.471 \pm 0.018)\%$ |
| $\Gamma_{23} = K^- 2\pi^0 \nu_{\tau} \text{ (ex. } K^0)$       | $(0.0630 \pm 0.0222) \cdot 10^{-2}$ | $10^{-2}$ |                       |
| $\Gamma_{28} = K^- 3\pi^0 \nu_{\tau} \text{ (ex. } K^0, \eta)$ | $(0.0419 \pm 0.0218) \cdot 10^{-2}$ | $10^{-2}$ |                       |
| $\Gamma_{35} = \pi^- \bar{K}^0 \nu_\tau$                       | $(0.8206 \pm 0.0182) \cdot 10^{-2}$ | $10^{-2}$ | $(0.857 \pm 0.030)\%$ |
| $\Gamma_{110} = X_s^- \nu_\tau$                                | $(2.8746 \pm 0.0498) \cdot 10^{-2}$ | 10-2      | $(2.967 \pm 0.060)\%$ |

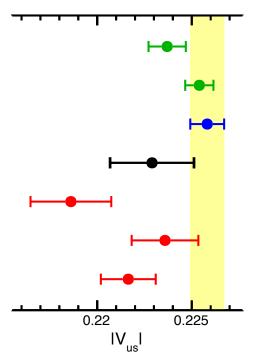
Antonelli, Cirigliano, Lusiani, E.P. '13

- Longstanding inconsistencies between τ and kaon decays in extraction of V<sub>us</sub>
   Recent studies
  - R. Hudspith, R. Lewis, K. Maltman, J. Zanotti'17
- Crucial input:
   τ → Kπν<sub>τ</sub> Br + spectrum

$$|V_{us}| = 0.2229 \pm 0.0022_{\text{exp}} \pm 0.0004_{\text{theo}}$$

need new data




# 2.6 $V_{us}$ using info on Kaon decays and $\tau \to K\pi\nu_{\tau}$

| Branching fraction                                             | HFAG Winter 2012 fit                                           |
|----------------------------------------------------------------|----------------------------------------------------------------|
| $\Gamma_{10} = K^- \nu_\tau$                                   | $(0.6955 \pm 0.0096) \cdot 10^{-2}$ (0.713 ± 0.003)%           |
| $\Gamma_{16} = K^- \pi^0 \nu_\tau$                             | $(0.4322 \pm 0.0149) \cdot 10^{-2}$ (0.471 ± 0.018)%           |
| $\Gamma_{23} = K^- 2\pi^0 \nu_\tau \text{ (ex. } K^0)$         | $(0.0630 \pm 0.0222) \cdot 10^{-2}$                            |
| $\Gamma_{28} = K^- 3\pi^0 \nu_{\tau} \text{ (ex. } K^0, \eta)$ | $(0.0419 \pm 0.0218) \cdot 10^{-2}$                            |
| $\Gamma_{35} = \pi^- \bar{K}^0 \nu_\tau$                       | $(0.8206 \pm 0.0182) \cdot 10^{-2} \qquad (0.857 \pm 0.030)\%$ |
| $\Gamma_{110} = X_s^- \nu_\tau$                                | $(2.8746 \pm 0.0498) \cdot 10^{-2}$ (2.967 ± 0.060)%           |

Antonelli, Cirigliano, Lusiani, E.P. '13

- Longstanding inconsistencies between T and kaon decays in extraction of V<sub>us</sub> Recent studies
  - R. Hudspith, R. Lewis, K. Maltman, J. Zanotti'17
- Crucial input:  $\tau \rightarrow K\pi v_{\tau} Br + spectrum$

$$|V_{us}| = 0.2229 \pm 0.0022_{\text{exp}} \pm 0.0004_{\text{theo}}$$



K<sub>13</sub>, PDG 2016  $0.2237 \pm 0.0010$ 

K<sub>12</sub>, PDG 2016  $0.2254 \pm 0.0007$ 

CKM unitarity, PDG 2016  $0.2258 \pm 0.0009$ 

 $\tau \rightarrow s$  incl., Maltman 2017  $0.2229 \pm 0.0022 \pm 0.0004$ 

 $\tau \rightarrow s$  incl., HFLAV 2016  $0.2186 \pm 0.0021$ 

 $\tau \rightarrow Kv / \tau \rightarrow \pi v$ , HFLAV 2016

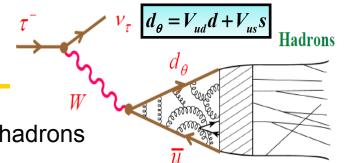
 $0.2236 \pm 0.0018$ 

τ average, HFLAV 2016

 $0.2216 \pm 0.0015$ 

HFLAV Spring 2017



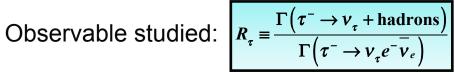

need new data

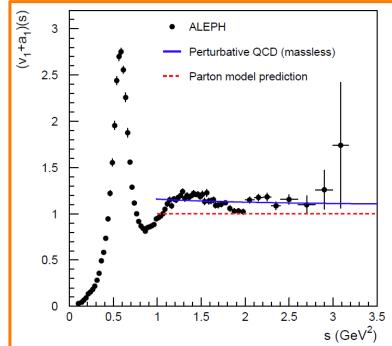
#### 4.2 Outlook

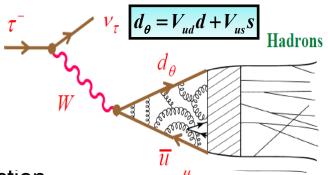
- 45 billion  $\tau^+\tau^-$  pairs in full dataset from  $\sigma(\tau^+\tau^-)_{E=\Upsilon(4S)}=0.9$  nb @Belle II
- B2TiP initiative: define the first set of measurements to be performed at Belle III
   https://confluence.desy.de/display/BI/B2TiP+WebHome
- Golden/Silver modes for the Tau, Low Multiplicity and EW working group

|                                              |                   |        | Theory Sys. limit (Discovery) [ab-1]  Theory Sys. limit (Discovery) [ab-1]  Theory Sys. limit (Discovery) [ab-1] |         |         |      |            |
|----------------------------------------------|-------------------|--------|------------------------------------------------------------------------------------------------------------------|---------|---------|------|------------|
| Process                                      | Opservaple        | Theory | 57 <sup>5.</sup> 1                                                                                               | imit (D | b Belle | Anom | ally<br>NP |
| $	au 	o \mu \gamma$                          | Br.               | ***    | -                                                                                                                | ***     | ***     | *    | ***        |
| au  ightarrow lll                            | Br.               | ***    | -                                                                                                                | ***     | ***     | *    | ***        |
| $	au 	o K\pi  u$                             | $A_{\mathrm{CP}}$ | ***    | -                                                                                                                | ***     | ***     | **   | **         |
| $e^+e^- \to \gamma A'(\to \text{invisible})$ | $\sigma$          | ***    | -                                                                                                                | ***     | ***     | *    | ***        |
| $e^+e^- \to \gamma A'(\to \ell^+\ell^-)$     | $\sigma$          | ***    | -                                                                                                                | ***     | ***     | *    | ***        |
| $\pi$ form factor                            | g-2               | **     | -                                                                                                                | ***     | **      | **   | ***        |
| ISR $e^+e^- \to \pi\pi$ g-2                  | g-2               | **     | -                                                                                                                | ***     | ***     | **   | ***        |

#### 3.1 Introduction





Davier et al'13


- Tau, the only lepton heavy enough to decay into hadrons  $v_1(s) = 2\pi \operatorname{Im} \Pi_{ud,V}^{(l)}(s)$
- $m_{\pi} \sim 1.77 \text{GeV} > \Lambda_{OCD}$ ⇒ use *perturbative tools: OPE…*
- Inclusive T decays  $(S) \xrightarrow{\tau \to (ud, us)} V_{\tau}^{(0+1)} (S)$  fund. SM parameters  $(\alpha_s(m_{\tau}), |V_{us}|, m_s)$
- We consider  $\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons}_{S=0})$

$$\Gamma \left( au^- 
ightarrow 
u_{ au} + \mathrm{hadrons}_{S 
eq 0} 
ight)$$

- ALEPH and OPAL at LEP measured with precision not only the total BRs but also the energy distribution of the hadronic system huge QCD activity!







• 
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \overline{\nu}_e)} \approx N_c$$
 parton model prediction

$$\frac{\Gamma\left(\tau \stackrel{R}{\to} v_{\tau} + hadrons\right)}{\Gamma\left(\tau \stackrel{R}{\to} v_{\tau} + hadrons\right)} \approx |V_{ud}|^{2} N_{C} + |V_{us}|^{2} N_{C}$$

$$\approx N_{C}$$

$$= R_{\tau}^{S} = V_{ud}^{S} R_{\tau}^{S} R_{\tau}^{S} N_{C} V_{ud} V_{ud} V_{us}^{S} \approx 2.85 + 0.15$$

$$\frac{\left|V_{us}\right|^{2}}{\left|V_{us}\right|^{2}} \approx \frac{R_{\tau}^{S\neq0}}{R_{\tau}^{S=0}} \qquad \left|V_{us}\right|^{2}$$

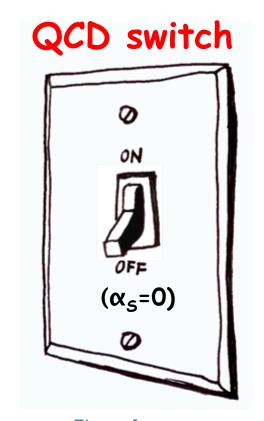
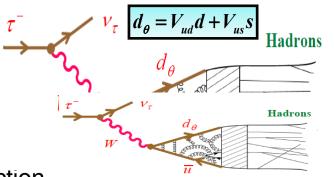
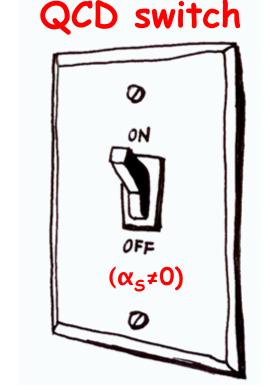



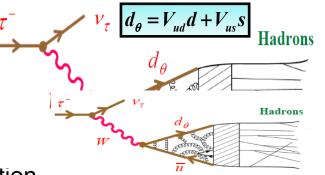

Figure from M. González Alonso'13




• 
$$R_{\tau} \equiv \frac{\Gamma\left(\tau^{-} \to v_{\tau} + \text{hadrons}\right)}{\Gamma\left(\tau^{-} \to v_{\tau} e^{-} \overline{v_{e}}\right)} \approx N_{c}$$
 parton model prediction

$$\frac{\Gamma\left(\tau \stackrel{R}{\Rightarrow} v_{\tau} = R_{dn}^{NS} + R_{e}^{S} \stackrel{\approx}{\Rightarrow} |V_{ud}|^{2} N_{c} + |V_{us}|^{2} N_{c}}{\Gamma\left(\tau \rightarrow v_{\tau} e^{-} v_{e}\right)} \approx N_{c}$$

$$= R_{\tau}^{S=0} = R_{\tau}^{erino} = N_{C} V_{ud} V_{ud} R_{\tau}^{2} = \frac{1 - B_{e} - B_{\mu}}{N_{C} |V_{ud}|^{2}} = \frac{1 - B_{e} - B_{\mu}}{2.85 + 0.15} = \frac{3.6291 \pm 0.0086}{2.85 + 0.15}$$


$$\frac{\left|V_{us}\right|^{2}}{\left|V_{ud}\right|^{2}} \approx \frac{R_{\tau}^{S \neq 0}}{R_{\tau}^{S = 0}}$$

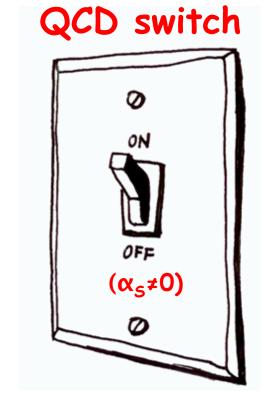
$$\left|V_{us}\right|^2$$



$$S=0 \approx N_C |V_{ud}|^2 + O(\alpha_s)$$

$$\alpha_{s}$$




$$\frac{\Gamma\left(\tau \stackrel{R}{\Rightarrow} v_{\tau} \stackrel{=}{+} \frac{R_{nadrons}^{NS} + R_{nadrons}^{S}}{\Gamma\left(\tau \rightarrow v_{\tau} e^{-} v_{e}\right)} |V_{ud}|^{2} N_{c} + |V_{us}|^{2} N_{c}}{\Gamma\left(\tau \rightarrow v_{\tau} e^{-} v_{e}\right)} \approx N_{c}$$

$$= R_{\tau}^{S = E} + R_{\tau}^{sianentally} = N_{C} V_{ud}^{R} + \frac{1 - B_{e} - B_{\mu}}{N_{C} |B_{\mu s}|^{2}} = 2.83 + 0.13086$$

Due to QCD corrections: 
$$R_{\tau} = |V_{ud}|^2 N_C + |V_{us}|^2 N_C + O(\alpha_S)$$

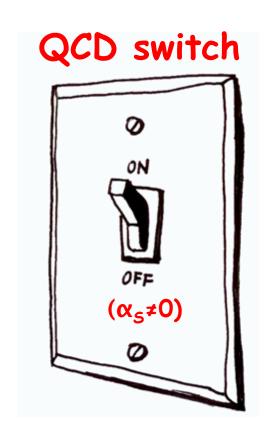
$$\frac{|V_{us}|^2}{|V_{us}|^2} \approx \frac{R_{\tau}^{S \neq 0}}{R_{\tau}^{S = 0}}$$

$$|V_{us}|^2$$



$$S=0 \approx N_C |V_{ud}|^2 + O(\alpha_s)$$

$$\alpha_{s}$$

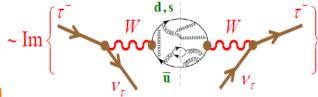

From the measurement of the spectral functions, extraction of  $\alpha_{\rm S}$ ,  $|V_{\rm us}|$ 

$$= \frac{\Gamma\left(\tau^{-} \rightarrow v_{\tau} + \text{hadrons}\right)}{\Gamma\left(\tau^{-} \rightarrow v_{\tau} + \frac{\Gamma\left(\tau^{-} \rightarrow v_{\tau} + \frac{\Gamma\left(\tau^{-} \rightarrow v_{e}\right)}{\Gamma\left(\tau^{-} \rightarrow v_{\tau} + \frac{\Gamma\left(\tau^{-} \rightarrow v_{e}\right)}{\Gamma\left(\tau^{-} \rightarrow v_{\tau} + \frac{\Gamma\left(\tau^{-} \rightarrow v_{e}\right)}{\Gamma\left(\tau^{-} \rightarrow v_{e}\right)}\right)}} \approx N_{C}$$
 naïve QCD prediction 
$$\Gamma\left(\tau^{-} \rightarrow v_{\tau} + \frac{\Gamma\left(\tau^{-} \rightarrow v_{\tau} + \frac{\Gamma\left(\tau^{-} \rightarrow v_{e}\right)}{\Gamma\left(\tau^{-} \rightarrow v_{e}\right)}\right)}{\Gamma\left(\tau^{-} \rightarrow v_{\tau} + \frac{\Gamma\left(\tau^{-} \rightarrow v_{e}\right)}{\Gamma\left(\tau^{-} \rightarrow v_{e}\right)}\right)} \approx N_{C}$$

$$R_{\tau}^{NS} = \text{Extraction of the strong coupling constant} + N_{C} |V_{us}| \approx 2.85 + 0.15$$

$$R_{\tau}^{NS} = |V_{ud}|^{2} N_{C} + O(\alpha_{S}) \qquad \alpha_{S}$$
measured calculated

$$\frac{\left|V_{us}\right|^{2}}{\left|V_{ud}\right|^{2}} \approx \frac{R_{\tau}^{S \neq 0}}{\left|R_{\tau}^{S}\right|^{2}} = \frac{R_{\tau}^{S}}{\left|V_{ud}\right|^{2}} = \frac{R_{\tau}^{S}}{\left|V_{ud}\right|^{2}} + O\left(\alpha_{s}^{us}\right)^{2}$$




 $S=0 \approx NV$  and if c = 0 in the lest accuracy

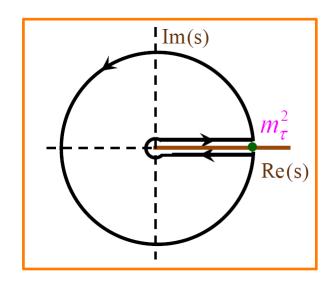
## 3.3 Calculation of the QCD corrections

• Calculation of  $R_{\tau}$ :

$$R_{\tau}(m_{\tau}^{2}) = 12\pi S_{EW} \int_{0}^{m_{\tau}^{2}} \frac{ds}{m_{\tau}^{2}} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left[ \left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \operatorname{Im} \Pi^{(1)}(s + i\varepsilon) + \operatorname{Im} \Pi^{(0)}(s + i\varepsilon) \right]$$



Braaten, Narison, Pich'92


- Analyticity: Π is analytic in the entire complex plane except for s real positive
  - Cauchy Theorem

$$R_{\tau}(m_{\tau}^{2}) = 6i\pi S_{EW} \oint_{|s|=m_{\tau}^{2}} \frac{ds}{m_{\tau}^{2}} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left[ \left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \Pi^{(1)}(s) + \Pi^{(0)}(s) \right]$$

We are now at sufficient energy to use OPE:

$$\Pi^{(J)}(s) = \sum_{D=0,2,4...} \frac{1}{(-s)^{D/2}} \sum_{\dim O = D} C^{(J)}(s,\mu) \left\langle O_D(\mu) \right\rangle$$
Wilson coefficients

Operators



μ: separation scale between short and long distances

#### 3.3 Calculation of the QCD corrections

Braaten, Narison, Pich'92

• Calculation of  $R_{\tau}$ :

$$\left| R_{\tau} \left( m_{\tau}^{2} \right) = N_{C} S_{EW} \left( 1 + \delta_{P} + \delta_{NP} \right) \right|$$

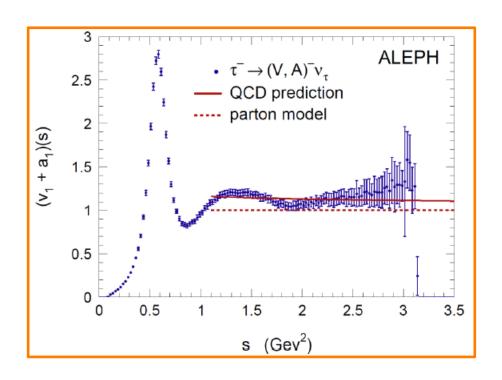
- Electroweak corrections:  $S_{EW} = 1.0201(3)$  Marciano & Sirlin'88, Braaten & Li'90, Erler'04
- Perturbative part (D=0):  $\delta_P = a_\tau + 5.20 \ a_\tau^2 + 26 \ a_\tau^3 + 127 \ a_\tau^4 + ... \approx \frac{20\%}{\pi}$   $a_\tau = \frac{\alpha_s(m_\tau)}{\pi}$

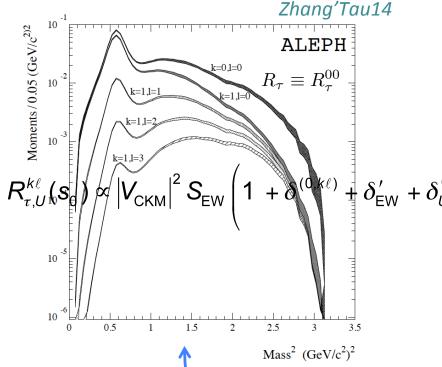
Baikov, Chetyrkin, Kühn'08

- D=2: quark mass corrections, neglected for  $R_{\tau}^{NS}$  ( $\propto m_u, m_d$ ) but not for  $R_{\tau}^{S}$  ( $\propto m_s$ )
- D ≥ 4: Non perturbative part, not known, fitted from the data
   Use of weighted distributions

87

### 3.3 Calculation of the QCD corrections


Le Diberder&Pich'92


• D ≥ 4: Non perturbative part, not known, *fitted from the data* 

Use of weighted distributions

Exploit shape of the spectral functions to obtain additional experimental information

$$R_{\tau,U}^{k\ell}(s_0) = \int_0^{s_0} ds \left(1 - \frac{s}{s_0}\right)^k \left(\frac{s}{s_0}\right)^\ell \frac{dR_{\tau,U}(s_0)}{ds}$$







# 3.4 Extraction of $\alpha_s$

- Several delicate points:
  - How to compute the perturbative part: CIPT vs. FOPT?
  - How to estimate the non perturbative contribution? Where do we truncate the expansion, what is the role of higher order condensates?
  - Which weights should we use?
  - What about duality violations?
  - A MITP topical workshop in Mainz: March 7-12, 2016

    Determination of the fundamental parameters of QCD

    A session on Tuesday afternoon

 New data on spectral functions needed to help to answer some of these questions