HL/HE detector challenges for LHCb

Matthew Rudolph Syracuse University

on behalf of the LHCb Collaboration

April 5, 2018

The future of LHCb

HL-LHC(b)

- LHCb will operate in Run 4 similar to Run 3
- High luminosity era really begins after LS4

$\mathcal{L}(10^{32}/\text{s/cm}^2)$	Collisions

Run 2	4	1
Run 3-4	20	5
Run 5+	100-200	50

Challenges of luminosity

- Ten times more collisions brings:
 - Occupancy
 - Combinatorics track finding and decay finding
 - Radiation
 - Data rate
- Geometry means every subdetector faces a wide range of flux

Fluence map for SciFi tracker in Upgrade I

A new experiment

Even if its not obvious from this picture

A new experiment

- LHCb must be a new detector for Run 5
- Challenge maintain detector strengths in tracking and particle ID with 10 times more pile-up than upgrade I
- Essential for finding complex decay chains with manageable combinatorial backgrounds
- But also opportunities to improve the current performance!
 - Some of which may be added early as Upgrade Ib

The power of time

- Become a 4D detector many upgrades exploit precise timing measurements
- Solves challenges in:
 - Track finding
 - Vertex finding and association
 - Matching particles across sub-detectors

Vertex Locator

- Current VELO would not work for HL-LHC
 - Huge fraction of fake tracks (ghosts)
- Can reduce with better granularity and timing

VELO with time

Timing even more important than pixel size!

200um outer

- Goal is \approx 30 ps for outer part
- Mis-association scales linearly with luminosity

Even a 200 µm pixel would work!

Downstream tracking

- Current Scintillating Fibre tracker evolves
- Occupancy requires staged upgrades

Upgrade 1b

Upgrade 2

HV-CMOS

- HV-CMOS devices potential low-cost solution for downstream tracker
 - Good segmentation, performance after irradiation
 - Monolithic design with readout
- Watching results from other experiments like Mu3e

MuPix8

sensor for Mu3e

Magnet stations

Opportunity for improvement

- R&D underway to place tracking in the magnet
- Only need granularity of 1 mm for huge gains at low momentum

 Possible design with extruded scintillator bars as in D0 preshower

RICH detectors

- Current detectors would have 100% occupancy
- Three-fold plan:
 - Adjust optics
 - Finer segmentation
 - Shift sensitivity towards green
- SiPM may be a solution
- Can improve RICH1/2 resolution from 1.6/0.7 mrad to 0.2/0.1!
- Possible time resolution of ≈ 100 ps

TORCH

- New time-of-flight detector design
 - Uses internally reflected Cherenkov light
 - Provides particle ID to lower momenta

Testing TORCH

Promising recent testbeam results!

Readout pattern in position and time:

ECAL

- Part of current ECAL must be replaced in LS3 chance to start upgrade early?
- Opportunity to improve reconstruction of electrons and photons – many physics applications
- Inorganic scintillators like GAGG (Ce doped Gd₃Al₂Ga₃O₁₂) show good radiation tolerance in recent tests

ECAL segmentation

Increased segmentation a necessity

In space

Pointing Fibers in a Spaghetti Calorimeter

 and in time – Intrinsic or a dedicated silicon timing plane

Muons

- Occupancy in inner part of muon stations at rates up to 3 MHz/cm²
- Solution is more shielding and more granularity
- One promising solution μ-RWELL micropattern detector
- Tests show good gain performance at expected rates

Relative gain v. x-ray rates (arrow for MIPs at 3 MHz)

Data

The biggest challenge?

- Almost all crossings will have signal!
- Upgrade I full software trigger is huge physics gain
- Upgrade II could result in throughput of 500 Tb/s with storage rate of 50 GB/s!

Requiring decay time > 0.2 ps

- Will be data rate 10x ATLAS/CMS in HL-LHC!
- Will take more creativity than waiting for hardware improvements

Is timing the answer?

- Can we use timing to remove pile-up?
- Can timing be used to speed-up tracking?

- Investigating possibility of VELO fast reconstruction based on track stubs with timing
- First investigations for implementation in FPGA
- Will need to closely follow development of computing technologies over coming years

Codex-b

A new detector for long-lived particles

Was more discussion in Mike Williams's talk yesterday

HE-LHCb?

- A lot of ongoing work for physics case and detector for Upgrade II, further future is much more speculative
- What might HE era mean for LHCb?
- Would be at even higher pile-up 10x upgrade II?
- Further multiplication of challenges
 - Would need finer segmentation in space and time
 - Data challenges will grow even greater

Conclusions

- High luminosity running presents many challenges for LHCb
 - Occupancy, radiation, and data rate
- Planning underway to identify upgrade solutions that would make it possible
- R&D just beginning
- Use of timing is key strategy to overcome challenges
- Sources and more information available from recent workshop on Upgrade II at Annecy – link