TH perspective on CPV in (fermionic) Higgs couplings

Adam Martin (amarti41@nd.edu)
University of Notre Dame

somewhat based on: Harnik, Martin, Okui, Primulando, Yu [1308.1094]

HE/HL-LHC workshop, FNAL, April 6th, 2018

Motivations

CPV in the Higgs sector is a clear signal of BSM physics

Theoretical motivations:

- matter/antimatter asymmetry requires CPV
- electroweak baryogengesis: SM insufficient
 .: suggests new phases needed
- CP puzzles remain: $\theta_{QCD} < 10^{-10}$, phases of PMNS matrix
- many UV scenarios (i.e. 2HDM) involve extended Higgs sectors and the possibility of CPV Higgs

CPV in **HVV** couplings

$$\mathcal{L}\supset \frac{m_Z^2}{v}\,h\,Z^\mu Z_\mu + c_{ZZ}\frac{h}{\Lambda}Z^{\mu\nu}Z_{\mu\nu} + c_{Z\tilde{Z}}\frac{h}{\Lambda}Z^{\mu\nu}\tilde{Z}_{\mu\nu}$$
 (+ analogous for W)

CP nature tested extensively by h → ZZ* to 4ℓ, acoplanarity of the Z

decays

e.g. [Gao et al, 1001.3396]

czž operator dim-5, suppressed relative to mz²/v term —
 hurts sensitivity to mixed CP

$$\mathcal{L} \supset -m_f \bar{f} f - h \, \bar{f} (\mathbf{a} + \mathbf{i} \, \mathbf{b} \, \gamma_5) f$$

$$\uparrow f_L^{\dagger} f_R (\mathbf{a} + \mathbf{i} \, \mathbf{b}) + f_R^{\dagger} f_L (\mathbf{a} - \mathbf{i} \, \mathbf{b})$$

Phase difference between $f_L^\dagger f_R$ and $f_R^\dagger f_L$

Phase difference between $\,f_L^\dagger f_R\,$ and $\,f_R^\dagger f_L\,$

CP even: b = 0 (SM prediction)

CP odd: a = 0 (CP conserved!)

CP admixture: $a \neq 0$, $b \neq 0$ (**CP-violation**,

maximal if a = b)

Phase difference between $\,f_L^\dagger f_R\,$ and $\,f_R^\dagger f_L\,$

CP even: b = 0 (SM prediction)

CP odd: a = 0 (CP conserved!)

CP admixture: $a \neq 0$, $b \neq 0$ (**CP-violation**,

maximal if a = b)

To see CPV in Hff at the LHC:

$$\mathcal{L} \supset -m_f \bar{f} f - h \, \bar{f} (a + i \, b \, \gamma_5) f$$

$$\uparrow f_L f_R (a + i \, b) + f_R^{\dagger} f_L (a - i \, b)$$

Phase difference between $\,f_L^\dagger f_R\,$ and $\,f_R^\dagger f_L\,$

CP even: b = 0 (SM prediction)

CP odd: a = 0 (CP conserved!)

CP admixture: $a \neq 0$, $b \neq 0$ (**CP-violation**,

maximal if a = b)

To see CPV in Hff at the LHC:

Need a fermion who's polarization information is

- 1.) observable at LHC
- 2.) not washed out by hardronization

$$\mathcal{L} \supset -m_f \bar{f} f - h \, \bar{f} (a + i \, b \, \gamma_5) f$$

$$\uparrow f_L^{\dagger} f_R (a + i \, b) + f_R^{\dagger} f_L (a - i \, b)$$

Phase difference between $\,f_L^\dagger f_R\,$ and $\,f_R^\dagger f_L\,$

CP even: b = 0 (SM prediction)

CP odd: a = 0 (CP conserved!)

CP admixture: $a \neq 0$, $b \neq 0$ (**CP-violation**,

maximal if a = b)

To see CPV in Hff at the LHC:

Need a fermion who's polarization information is

- 1.) observable at LHC (rules out light electrons, muons)
- 2.) not washed out by hardronization (rules out light quarks, b, c)

Phase difference between $\,f_L^\dagger f_R\,$ and $\,f_R^\dagger f_L\,$

CP even: b = 0 (SM prediction)

CP odd: a = 0 (CP conserved!)

CP admixture: $a \neq 0$, $b \neq 0$ (**CP-violation**,

maximal if a = b)

To see CPV in Hff at the LHC:

Need a fermion who's polarization information is

- 1.) observable at LHC (rules out light electrons, muons)
- 2.) not washed out by hardronization (rules out light quarks, b, c)

leaves hττ, htt as possibilities

EFT approach: add dim-6 operator
$$\left(\alpha + \beta \frac{H^\dagger H}{\Lambda^2}\right) H L e_c$$

EFT approach: add dim-6 operator $\left(\alpha + \beta \frac{H^{\dagger}H}{\Lambda^2}\right)HLe_c$

after EWSB, this becomes:

$$\left(\alpha + \beta \frac{v^2}{2\Lambda^2}\right) \frac{v}{\sqrt{2}} L e_c + \left(\alpha + \frac{3\beta}{2\Lambda^2}\right) \frac{v^2}{\sqrt{2}} L e_c$$

EFT approach: add dim-6 operator $\left(\alpha + \beta \frac{H^\dagger H}{\Lambda \, 2}\right) H \, L \, e_c$

after EWSB, this becomes:

$$\left(\alpha + \beta \frac{v^2}{2\Lambda^2}\right) \frac{v}{\sqrt{2}} L e_c + \left(\alpha + \frac{3\beta}{2\Lambda^2} \frac{v^2}{2\Lambda^2}\right) \frac{h}{\sqrt{2}} L e_c$$

$$y_{SM}$$

$$(a+ib)$$

EFT approach: add dim-6 operator $\left(\alpha + \beta \frac{H^{\dagger}H}{\Lambda^2}\right)HLe_c$

after EWSB, this becomes:

$$\left(\alpha + \beta \frac{v^2}{2\Lambda^2}\right) \frac{v}{\sqrt{2}} L e_c + \left(\alpha + \frac{3\beta}{2\Lambda^2} \frac{v^2}{2\Lambda^2}\right) \frac{h}{\sqrt{2}} L e_c$$

$$y_{SM}$$

$$(a + ib)$$

So:
$$(a+ib) = \frac{y_{SM}}{v} + 2\beta \frac{v^2}{2\Lambda^2}$$

EFT approach: add dim-6 operator $\left(\alpha + \beta \frac{H^{\dagger}H}{\Lambda^2}\right)HLe_c$

after EWSB, this becomes:

$$\left(\alpha + \beta \frac{v^2}{2\Lambda^2}\right) \frac{v}{\sqrt{2}} L e_c + \left(\alpha + \frac{3\beta}{2\Lambda^2} \frac{v^2}{2\Lambda^2}\right) \frac{h}{\sqrt{2}} L e_c$$

$$y_{SM}$$

$$(a+ib)$$

So:
$$(a+ib) = \frac{y_{SM}}{v} + 2\beta \frac{v^2}{2\Lambda^2}$$

for light fermions, can have BSM ~ SM for Λ ≫ v!

EFT approach: add dim-6 operator $\left(\alpha + \beta \frac{H^{\dagger}H}{\Lambda^2}\right)HLe_c$

after EWSB, this becomes:

$$\left(\alpha + \beta \frac{v^2}{2\Lambda^2}\right) \frac{v}{\sqrt{2}} L e_c + \left(\alpha + \frac{3\beta}{2\Lambda^2}\right) \frac{h}{\sqrt{2}} L e_c$$

$$y_{SM} \qquad \qquad (a+ib)$$

So:
$$(a + ib) = \frac{y_{SM}}{v} + 2\beta \frac{v^2}{2\Lambda^2}$$
 new phases, flavor indices..

for light fermions, can have BSM ~ SM for Λ ≫ v!

CPV Higgs top coupling:

- assuming SM y_e, y_u, y_d, strong constraints from EDM, neutron EDM
- hgg and hγγ also affected → altered Higgs rates

[Brod, Haisch, Zupan 1310.1385]

CPV Higgs top coupling:

- assuming SM y_e, y_u, y_d, strong constraints from EDM, neutron EDM
- hgg and hγγ also affected → altered Higgs rates

constraints can relax somewhat if light Yukawas, hWW not standard...

[Brod, Haisch, Zupan 1310.1385]

CPV Higgs tau coupling:

- current EDM measurements not constraining, even for SM ye
- effect on Higgs production predominantly from $\Gamma_h \propto (a^2 + b^2)$

To better constrain things, need to look at differential distributions

[Brod, Haisch, Zupan 1310.1385]

CPV Higgs tau coupling:

- current EDM measurements not constraining, even for SM ye
- effect on Higgs production predominantly from Γ_h ∝ (a²+ b²)

To better constrain things, need to look at differential distributions

Specifically, work with:

$$a = y_{\tau,SM} \cos \Delta$$

 $b = y_{\tau,SM} \sin \Delta$

How do we see $\sin \Delta$?

[Brod, Haisch, Zupan 1310.1385]

CPV Higgs tau coupling:

- current EDM measurements not constraining, even for SM ye
- effect on Higgs production predominantly from Γ_h ∝ (a²+ b²)

To better constrain things, need to look at differential distributions

Specifically, work with:

$$a = y_{\tau,SM} \cos \Delta$$

 $b = y_{\tau,SM} \sin \Delta$

How do we see $\sin \Delta$?

[Brod, Haisch, Zupan 1310.1385]

$$\supset -m_{\tau}\bar{\tau}\tau - \frac{y_{\tau}}{\sqrt{2}}h\,\bar{\tau}(\cos\Delta + i\,\sin\Delta\,\gamma_{5})\tau \qquad \qquad \begin{array}{c} \text{Higgs rest frame:} \\ \text{(mH/2)}\,\bar{\mathbf{p}}\,\cdot(\vec{\mathbf{s}}_{1}\,\times\vec{\mathbf{s}}_{2}) \\ \uparrow \end{array}$$

$$|\mathcal{M}(h \to \tau^+(p_1, s_1)\tau^-(p_2, s_2)|^2 \propto \sin 2\Delta \epsilon^{\mu\nu\rho\sigma} p_{1\mu} p_{2\nu} s_{1\rho} s_{2\sigma}$$

+ pieces independent of $sin\Delta$

$$\supset -m_{\tau}\bar{\tau}\tau - \frac{y_{\tau}}{\sqrt{2}}h\,\bar{\tau}(\cos\Delta + i\,\sin\Delta\,\gamma_{5})\tau \qquad \qquad \begin{array}{c} \text{Higgs rest frame:} \\ (\mathsf{m_H/2})\,\bar{\mathsf{p}}\cdot(\vec{\mathsf{s}}_{1}\times\vec{\mathsf{s}}_{2}) \end{array} \\ |\mathcal{M}(h\to\tau^{+}(p_{1},s_{1})\tau^{-}(p_{2},s_{2})|^{2} \propto \sin2\Delta\,\epsilon^{\mu\nu\rho\sigma}p_{1\mu}p_{2\nu}s_{1\rho}s_{2\sigma} \\ + \text{pieces independent of } \sin\Delta$$

To access CPV, need the τ spins (technically, spin \perp motion)

$$\supset -m_{\tau}\bar{\tau}\tau - \frac{y_{\tau}}{\sqrt{2}}h\,\bar{\tau}(\cos\Delta + i\,\sin\Delta\,\gamma_{5})\tau \qquad \qquad \begin{array}{c} \text{Higgs rest frame:} \\ (\mathsf{m_H/2})\,\bar{\mathsf{p}}\cdot(\vec{\mathsf{s}}_{1}\times\vec{\mathsf{s}}_{2}) \end{array} \\ |\mathcal{M}(h\to\tau^{+}(p_{1},s_{1})\tau^{-}(p_{2},s_{2})|^{2} \propto \sin2\Delta\,\epsilon^{\mu\nu\rho\sigma}p_{1\mu}p_{2\nu}s_{1\rho}s_{2\sigma} \\ + \text{pieces independent of } \sin\Delta$$

To access CPV, need the τ spins (technically, spin \perp motion)

- Not directly observed, but spin info is passed on to decay products
- Want: decay mode with sizable BR and that faithfully captures spin info

$$\supset -m_{\tau}\bar{\tau}\tau - \frac{y_{\tau}}{\sqrt{2}}h\,\bar{\tau}(\cos\Delta + i\,\sin\Delta\,\gamma_{5})\tau \qquad \qquad \begin{array}{c} \text{Higgs rest frame:} \\ (\mathsf{m_H/2})\,\bar{\mathsf{p}}\cdot(\vec{\mathsf{s}}_{1}\times\vec{\mathsf{s}}_{2}) \end{array} \\ |\mathcal{M}(h\to\tau^{+}(p_{1},s_{1})\tau^{-}(p_{2},s_{2})|^{2} \propto \sin2\Delta\,\epsilon^{\mu\nu\rho\sigma}p_{1\mu}p_{2\nu}s_{1\rho}s_{2\sigma} \\ + \text{pieces independent of } \sin\Delta$$

To access CPV, need the τ spins (technically, spin \perp motion)

- Not directly observed, but spin info is passed on to decay products
- Want: decay mode with sizable BR and that faithfully captures spin info

Best candidate:
$$\tau^\pm \to \rho^\pm \nu, \rho^\pm \to \pi^\pm \pi^0$$
, BR ~ 26%

A '1 prong' decay, see photons from $\pi^0 \rightarrow \gamma \gamma$

ρ[±] emitted preferentially in τ spin direction, info passed on to decay products π[±], π⁰

ρ[±] emitted preferentially in τ spin direction, info passed on to decay products π[±], π⁰

form angle Θ based on triple product:

$$d\sigma(h \rightarrow \tau\tau)/d\Theta \supset -\cos(\Theta - 2\Delta)$$

to get maximum effect, need to measure p_ν to reconstruct p_{τ:}

ρ[±] emitted preferentially in τ spin direction, info passed on to decay products π[±], π⁰

form angle Θ based on triple product:

$$d\sigma(h \rightarrow \tau\tau)/d\Theta \supset -\cos(\Theta - 2\Delta)$$

to get maximum effect, need to measure p_ν to reconstruct p_{τ:}

[Harnik, Martin, Okui, Primulando, Yu 1308.1094]

- At LHC, we can't measure pv...
- If we use the collinear approximation ($p_{\nu} \propto p_{\rho}$), can still form Θ but it reduces to the acoplanarity angle between $\rho^+\rho^-$ decay ex. [Bower et al 0204292, Worek 0305082]

Size of oscillation reduced by ~75%

Proof of principle analysis:

[Harnik, Martin, Okui, Primulando, Yu 1308.1094]

- signal: pp \rightarrow h($\tau^+\tau^-$) + j, background Z + j
- require:

$$p_{T,j} > 140 \,\mathrm{GeV}, |\eta_j| < 2.5$$
 $p_{T,\rho^{\pm}} > 45 \,\mathrm{GeV}, |\eta_{\rho^{\pm}}| < 2.1$ $E_T > 40 \,\mathrm{GeV}, m_{\mathrm{coll}} > 120 \,\mathrm{GeV}$

 apply flat τ id efficiencies, 50%, 70% but neglect other detector response effects

Proof of principle analysis:

[Harnik, Martin, Okui, Primulando, Yu 1308.1094]

- signal: pp \rightarrow h($\tau^+\tau^-$) + j, background Z + j
- require:

$$\begin{split} p_{T,j} &> 140\,\mathrm{GeV}, |\eta_j| < 2.5 \\ p_{T,
ho^\pm} &> 45\,\mathrm{GeV}, |\eta_{
ho^\pm}| < 2.1 \\ E_T &> 40\,\mathrm{GeV}, m_\mathrm{coll} > 120\,\mathrm{GeV} \end{split}$$

motivated by 8 TeV h(ττ) search in 1 jet bin

 apply flat τ id efficiencies, 50%, 70% but neglect other detector response effects

For different tagging efficiencies, determine:

 required to distinguish pure CP-even vs. CP-odd

τ_h efficiency	50%	70%
3σ	$L = 550 \; {\rm fb}^{-1}$	$L = 300 \text{ fb}^{-1}$
5σ	$L = 1500 \text{ fb}^{-1}$	$L = 700 \text{ fb}^{-1}$
$Accuracy(L = 3 \text{ ab}^{-1})$	11.5°	8.0°

- admixture sensitivity at 3 ab⁻¹
- ideally, would like to move beyond collinear approximation to take advantage of Θ vs. ρ+ρ- acoplanarity

(VBF production also studied, T.Han et al 1612.00413)

For different tagging efficiencies, determine:

 required to distinguish pure CP-even vs. CP-odd

τ_h efficiency	50%	70%
3σ	$L = 550 \text{ fb}^{-1}$	$L = 300 \text{ fb}^{-1}$
5σ	$L = 1500 \text{ fb}^{-1}$	$L = 700 \text{ fb}^{-1}$
$Accuracy(L = 3 \text{ ab}^{-1})$	11.5°	8.0°

- admixture sensitivity at 3 ab⁻¹
- ideally, would like to move beyond collinear approximation to take advantage of Θ vs. ρ+ρ- acoplanarity

(VBF production also studied, T.Han et al 1612.00413)

For different tagging efficiencies, determine:

 required to distinguish pure CP-even vs. CP-odd

$ au_h$ efficiency	50%	70%
3σ	$L = 550 \text{ fb}^{-1}$	$L = 300 \text{ fb}^{-1}$
5σ	$L = 1500 \text{ fb}^{-1}$	$L = 700 \text{ fb}^{-1}$
$Accuracy(L = 3 \text{ ab}^{-1})$	11.5°	8.0°

- admixture sensitivity at 3 ab⁻¹
- ideally, would like to move beyond collinear approximation to take advantage of Θ vs. ρ+ρ- acoplanarity

(VBF production also studied, T.Han et al 1612.00413)

More realistic follow up, includes detector effects via Delphes:

[Askew, Jaiswal, Okui, Prosper, Sato 1501.03156]

More realistic follow up, includes detector effects via Delphes:

[Askew, Jaiswal, Okui, Prosper, Sato 1501.03156]

- degradation from angular resolution is minor (4% oscillation degradation)
- larger effect comes from MET resolution which causes Z+j background to leak into signal region. Can be improved upon using more sophisticated techniques (i.e. MVA)

More realistic follow up, includes detector effects via Delphes:

[Askew, Jaiswal, Okui, Prosper, Sato 1501.03156]

degradation from angular resolution is minor (4% oscillation degradation)

 larger effect comes from MET resolution which causes Z+j background to leak into signal region. Can be improved upon using more

sophisticated techniques

(i.e. MVA)

More realistic follow up, includes detector effects via Delphes:

[Askew, Jaiswal, Okui, Prosper, Sato 1501.03156]

Ideal analysis, 50% tag rate

degradation from angular resolution is minor (4% oscillation degradation)

 larger effect comes from MET resolution whice to leak into signal region. Can be improved u

sophisticated techniques

(i.e. MVA)

More realistic follow up, includes detector effects via Delphes:

[Askew, Jaiswal, Okui, Prosper, Sato 1501.03156]

Ideal analysis, 50% tag rate

degradation from angular resolution is minor (4% oscillation degradation)

 larger effect comes from MET resolution whice to leak into signal region. Can be improved u

sophisticated techniques

(i.e. MVA)

pileup effects not studied

Some help by including other modes:

$$c\tau_{\tau} \sim 90 \ \mu m$$

• for τ with displaced vertices, a second triple product can be defined [Berge, Bernreuther 0812.1910]

Ex:
$$\tau^{\pm} \rightarrow \pi^{\pm} + \nu$$

Some help by including other modes:

$$c\tau_\tau \sim 90~\mu m$$

• for τ with displaced vertices, a second triple product can be defined

Some help by including other modes:

$$c\tau_\tau \sim 90~\mu m$$

• for τ with displaced vertices, a second triple product can be defined

Some help by including other modes:

 $c\tau_\tau \sim 90~\mu m$

for τ with displaced vertices, a second triple product can be defined

Some help by including other modes:

 $c\tau_{\tau} \sim 90 \ \mu m$

for τ with displaced vertices, a second triple product can be defined

- approximates τ decay plane orientation, which is sensitive to CP mix
- can be formed in either lab frame or π^+ - π^- zero momentum frame
- works for any τ decay mode, can be mixed with previous method

Combining all modes & methods: [Berge, Bernreuther, Kirchner 1510.03850]

- gg → h → τ⁺ τ⁻ vs. Drell-Yan background
- $m_{\tau\tau}$ > 100 GeV, pT > 20 GeV $|\eta|$ < 2.5 for all charged objects, Gaussian smearing

3 ab⁻¹ sensitivity: $\Delta \sim 4$ (assuming 100% tau tagging?)

Combining all modes & methods: [Berge, Bernreuther, Kirchner 1510.03850]

- gg → h → τ⁺ τ⁻ vs. Drell-Yan background
- $m_{\tau\tau}$ > 100 GeV, pT > 20 GeV $|\eta|$ < 2.5 for all charged objects, Gaussian smearing

3 ab⁻¹ sensitivity: $\Delta \sim 4$ (assuming 100% tau tagging?)

Would be great to know how these sensitivities hold up in more realistic studies

Accessing the CPV Hff phase in taus at the HE- LHC: first thoughts

HE-LHC: h + j rate increases by roughly a factor of 3.5 for the 'proof of principle' cuts: faster increase than Z+j

p _T cut (GeV) on h+j for	NLO cross section for 27 TeV pp collider (MCFM 8.0)	Signal enhancement compared to 14 TeV, p _T > 140 GeV
100	12.1 pb	6.05×
140	6.96 pb	3.48× [Our original working point]
150	6.12 pb	3.06×
200	3.43 pb	1.72×
250	2.08 pb	1.04×

Much higher rate of boosted Higgses:

[F. Yu, 2017 HE/HE-LHC workshop]

- pros: can apply jet substructure technology, perhaps provide new insight into τ CP variables; more/better instrumented displaced τ's?
- cons: everything boosted means everything overlapping

- if light Yukawa are « SM values, can loosen EDM constraints
- loosening Higgs rate constraints requires non-SM hWW or other BSM
- directly probe $\sin \Delta_t$ in $t\bar{t}H$ production (or $t/\bar{t}H$)

- if light Yukawa are « SM values, can loosen EDM constraints
- loosening Higgs rate constraints requires non-SM hWW or other BSM
- directly probe $\sin \Delta_t$ in $t\bar{t}H$ production (or $t/\bar{t}H$)
- $\sin \Delta_t \neq 0$ can be seen many simple observables, such as $m_{t\bar{t}h}, \, p_{T,h}, \, \Delta \varphi_{t\bar{t}}$ but require reconstructing tops & Higgs...

- if light Yukawa are ≪ SM values, can loosen EDM constraints
- loosening Higgs rate constraints requires non-SM hWW or other BSM
- directly probe sinΔt in t̄tH production (or t/̄tH)
- sinΔt ≠ 0 can be seen many simple observables, such as mtth, p_{T,h}, Δφtt but require reconstructing tops & Higgs...

[Boudjema et al 1501.03157]

- if light Yukawa are ≪ SM values, can loosen EDM constraints
- loosening Higgs rate constraints requires non-SM hWW or other BSM
- directly probe $\sin \Delta_t$ in $t\bar{t}H$ production (or $t/\bar{t}H$)
- $\sin \Delta_t \neq 0$ can be seen many simple observables, such as $m_{t\bar{t}h}, \, p_{T,h}, \, \Delta \varphi_{t\bar{t}}$ but require reconstructing tops & Higgs...

Some recent tth observables that don't require complete event reconstruction:

$$\Delta \phi_{\ell^+\ell^-}|_{p_{T,h}>200\,\mathrm{GeV}}$$

[Buckley, Goncalves 1507.07926]

$$\cos(\Delta\theta_h(\ell^+,\ell^-)) = (\hat{p}_h \times \hat{p}_{\ell^+}) \cdot (\hat{p}_h \times \hat{p}_{\ell^-})$$

[Boudjema et al 1501.03157]

inspired by $\Delta \phi_{\ell+\ell-}$ sensitivity to spin correlations in pp $\rightarrow \bar{t}t$

[Mahlon, Parke 9512264,1001.3422]

[Buckley, Goncalves 1507.07926]

sensitivity at large Higgs boost, good for HE-LHC...

[see talk by Goncalves]

[Boudjema et al 1501.03157]

sensitive to sign of Δ_t

Conclusions

CPV Hff couplings: sure sign of new physics, present in simple UV completions and desired for EW baryogengesis

@LHC: collider environment limits study to hττ, htt

easy to arrange for relatively large BSM

tightly constrained (indirectly) by EDM, nEDM, though ∃ caveats

Conclusions

CPV Hff couplings: sure sign of new physics, present in simple UV completions and desired for EW baryogengesis

@LHC: collider environment limits study to hττ, htt

easy to arrange for relatively large BSM

tightly constrained (indirectly) by EDM, nEDM, though ∃ caveats

Spin correlation information communicated to f decay products (prompt or displaced), picked out through differential distributions → lots of statistics needed → HL-LHC arena

Conclusions

CPV Hff couplings: sure sign of new physics, present in simple UV completions and desired for EW baryogengesis

@LHC: collider environment limits study to hττ, htt

easy to arrange for relatively large BSM

tightly constrained (indirectly) by EDM, nEDM, though ∃ caveats

Spin correlation information communicated to f decay products (prompt or displaced), picked out through differential distributions → lots of statistics needed → HL-LHC arena

Some preliminary studies, but plenty of room for dedicated studies (pileup effects, tagging techniques + substructure, etc.) at LHC and beyond

HL/HE - LHC complementarity with future EDM experiments

Range of CPV Hff couplings after future EDM/ nEDM projected bounds (factor of 300 improvement)

htt, just 3rd gen couplings

[Brod, Haisch, Zupan 1310.1385]

At a Higgs factory

TABLE I: Cross section, branching fractions, expected number of signal events, and accuracy for measuring Δ for the ILC with $\sqrt{s} = 250$ GeV and 1 ab⁻¹ integrated luminosity.

Another way to understand $cos(\Theta-2\Delta)$

Can rewrite CPV htt as
$$e^{i\,\Delta}|++\rangle+e^{-i\,\Delta}|--
angle$$

If we measure polarization along momenta

Not sensitive to Δ

Another way to understand $cos(\Theta-2\Delta)$

Can rewrite CPV htt as
$$e^{i\,\Delta}|++\rangle+e^{-i\,\Delta}|--\rangle$$

If we instead polarization \perp momenta, with angle Θ between polarization planes of τ + and t-:

(explanation thanks to R. Harnik)