TH perspective on CPV in (fermionic) Higgs couplings

Adam Martin (amarti41@nd.edu) University of Notre Dame

塷 NOTRE DAME

somewhat based on: Harnik, Martin, Okui, Primulando, Yu [1308.1094]

Motivations

CPV in the Higgs sector is a clear signal of BSM physics

Theoretical motivations:

- matter/antimatter asymmetry requires CPV
- electroweak baryogengesis: SM insufficient
\therefore suggests new phases needed
- CP puzzles remain: $\theta_{\mathrm{QCD}}<10^{-10}$, phases of PMNS matrix
- many UV scenarios (i.e. 2HDM) involve extended Higgs sectors and the possibility of CPV Higgs

CPV in HVV couplings

$$
\mathcal{L} \supset \frac{m_{Z}^{2}}{v} h Z^{\mu} Z_{\mu}+c_{Z Z} \frac{h}{\Lambda} Z^{\mu \nu} Z_{\mu \nu}+c_{Z \tilde{Z}} \frac{h}{\Lambda} Z^{\mu \nu} \tilde{Z}_{\mu \nu}
$$

- CP nature tested extensively by $\mathrm{h} \rightarrow \mathrm{ZZ}$ * to 4ℓ, acoplanarity of the Z decays

e.g. [Gao et al, 1001.3396]
- $C_{z z ̇}$ operator dim-5, suppressed relative to $\mathrm{mz}^{2} / \mathrm{v}$ term hurts sensitivity to mixed CP

CPV in Hff couplings

$$
\begin{aligned}
\mathcal{L} \supset-m_{f} \bar{f} f-h & \bar{f}\left(a+i b \gamma_{5}\right) f \\
& \quad f_{L}^{\dagger} f_{R}(a+i b)+f_{R}^{\dagger} f_{L}(a-i b)
\end{aligned}
$$

Phase difference between $f_{L}^{\dagger} f_{R}$ and $f_{R}^{\dagger} f_{L}$

CPV in Hff couplings

$$
\begin{aligned}
\mathcal{L} \supset-m_{f} \bar{f} f-h & \bar{f}\left(a+i b \gamma_{5}\right) f \\
& >f_{L}^{\dagger} f_{R}(a+i b)+f_{R}^{\dagger} f_{L}(a-i b)
\end{aligned}
$$

Phase difference between $f_{L}^{\dagger} f_{R}$ and $f_{R}^{\dagger} f_{L}$
CP even: $b=0$ (SM prediction) CP odd: $\mathrm{a}=0$ (CP conserved!)
CP admixture: $a \neq 0, b \neq 0$ (CP-violation,

$$
\text { maximal if } a=b \text {) }
$$

CPV in Hff couplings

$$
\begin{aligned}
& \mathcal{L} \supset-m_{f} \bar{f} f-h \bar{f}\left(a+i b \gamma_{5}\right) f \\
&>f_{L}^{\dagger} f_{R}(a+i b)+f_{R}^{\dagger} f_{L}(a-i b)
\end{aligned}
$$

Phase difference between $f_{L}^{\dagger} f_{R}$ and $f_{R}^{\dagger} f_{L}$

$$
\begin{aligned}
& \text { CP even: } b=0(S M \text { prediction }) \\
& \text { CP odd: } a=0(C P \text { conserved! }) \\
& \text { CP admixture: } a \neq 0, b \neq 0(C P-v i o l a t i o n, ~ \\
&\text { maximal if } a=b)
\end{aligned}
$$

To see CPV in Hff at the LHC:

CPV in Hff couplings

$$
\begin{aligned}
\mathcal{L} \supset-m_{f} \bar{f} f-h & \bar{f}\left(a+i b \gamma_{5}\right) f \\
& >f_{L}^{\dagger} f_{R}(a+i b)+f_{R}^{\dagger} f_{L}(a-i b)
\end{aligned}
$$

Phase difference between $f_{L}^{\dagger} f_{R}$ and $f_{R}^{\dagger} f_{L}$

$$
\begin{aligned}
& \text { CP even: } b=0(S M \text { prediction) } \\
& \text { CP odd: } a=0(C P \text { conserved! }) \\
& \text { CP admixture: } a \neq 0, b \neq 0(C P-v i o l a t i o n, ~ \\
&\text { maximal if } a=b)
\end{aligned}
$$

To see CPV in Hff at the LHC:
Need a fermion who's polarization information is
1.) observable at LHC
2.) not washed out by hardronization

CPV in Hff couplings

$$
\begin{aligned}
& \mathcal{L} \supset-m_{f} \bar{f} f-h \bar{f}\left(a+i b \gamma_{5}\right) f \\
& \longrightarrow f_{L}^{\dagger} f_{R}(a+i b)+f_{R}^{\dagger} f_{L}(a-i b)
\end{aligned}
$$

Phase difference between $f_{L}^{\dagger} f_{R}$ and $f_{R}^{\dagger} f_{L}$

$$
\begin{aligned}
& \text { CP even: } b=0(S M \text { prediction) } \\
& \text { CP odd: } a=0(C P \text { conserved!) } \\
& \text { CP admixture: } a \neq 0, b \neq 0(C P-v i o l a t i o n, ~ \\
&\text { maximal if } a=b)
\end{aligned}
$$

To see CPV in Hff at the LHC:
Need a fermion who's polarization information is
1.) observable at LHC (rules out light electrons, muons)
2.) not washed out by hardronization (rules out light quarks, b, c)

CPV in Hff couplings

$$
\begin{aligned}
& \mathcal{L} \supset-m_{f} \bar{f} f-h \bar{f}\left(a+i b \gamma_{5}\right) f \\
& \longrightarrow f_{L}^{\dagger} f_{R}(a+i b)+f_{R}^{\dagger} f_{L}(a-i b)
\end{aligned}
$$

Phase difference between $f_{L}^{\dagger} f_{R}$ and $f_{R}^{\dagger} f_{L}$

$$
\begin{aligned}
& \text { CP even: } b=0(S M \text { prediction) } \\
& \text { CP odd: } a=0(C P \text { conserved!) } \\
& \text { CP admixture: } a \neq 0, b \neq 0(C P-v i o l a t i o n, ~ \\
&\text { maximal if } a=b)
\end{aligned}
$$

To see CPV in Hff at the LHC:
Need a fermion who's polarization information is
1.) observable at LHC (rules out light electrons, muons)
2.) not washed out by hardronization (rules out light quarks, b, c)

Origin of CPV in Hff couplings

EFT approach: add dim-6 operator $\quad\left(\alpha+\beta \frac{H^{\dagger} H}{\Lambda^{2}}\right) H L e_{c}$

Origin of CPV in Hff couplings

EFT approach: add dim-6 operator $\quad\left(\alpha+\beta \frac{H^{\dagger} H}{\Lambda^{2}}\right) H L e_{c}$
after EWSB, this becomes:

$$
\left(\alpha+\beta \frac{v^{2}}{2 \Lambda^{2}}\right) \frac{v}{\sqrt{2}} L e_{c}+\left(\alpha+3 \beta \frac{v^{2}}{2 \Lambda^{2}}\right) \frac{h}{\sqrt{2}} L e_{c}
$$

Origin of CPV in Hff couplings

EFT approach: add dim-6 operator $\quad\left(\alpha+\beta \frac{H^{\dagger} H}{\Lambda^{2}}\right) H L e_{c}$ after EWSB, this becomes:

$$
\begin{gathered}
\left(\alpha+\beta \frac{v^{2}}{2 \Lambda^{2}}\right) \frac{v}{\sqrt{2}} L e_{c}+\left(\alpha+3 \beta \frac{v^{2}}{2 \Lambda^{2}}\right) \frac{h}{\sqrt{2}} L e_{c} \\
y_{S M} \\
(a+i b)
\end{gathered}
$$

Origin of CPV in Hff couplings

EFT approach: add dim-6 operator $\quad\left(\alpha+\beta \frac{H^{\dagger} H}{\Lambda^{2}}\right) H L e_{c}$ after EWSB, this becomes:

$$
\begin{gathered}
\left(\alpha+\beta \frac{v^{2}}{2 \Lambda^{2}}\right) \frac{v}{\sqrt{2}} L e_{c}+\left(\alpha+3 \beta \frac{v^{2}}{2 \Lambda^{2}}\right) \frac{h}{\sqrt{2}} L e_{c} \\
y_{S M} \\
(a+i b)
\end{gathered}
$$

$$
\text { so: } \quad(a+i b)=\frac{y_{S M}}{v}+2 \beta \frac{v^{2}}{2 \Lambda^{2}}
$$

Origin of CPV in Hff couplings

EFT approach: add dim-6 operator $\quad\left(\alpha+\beta \frac{H^{\dagger} H}{\Lambda^{2}}\right) H L e_{c}$ after EWSB, this becomes:

$$
\begin{gathered}
\begin{array}{c}
\left.\alpha+\beta \frac{v^{2}}{2 \Lambda^{2}}\right) \frac{v}{\sqrt{2}} L e_{c}+\left(\alpha+3 \beta \frac{v^{2}}{2 \Lambda^{2}}\right) \frac{h}{\sqrt{2}} L e_{c} \\
y_{S M} \\
(a+i b) \\
\text { So: } \quad(a+i b)=\frac{y_{S M}}{v}+2 \beta \frac{v^{2}}{2 \Lambda^{2}}
\end{array} \text { (a)}
\end{gathered}
$$

- for light fermions, can have BSM ~ SM for $\wedge \gg v$!

Origin of CPV in Hff couplings

EFT approach: add dim-6 operator $\quad\left(\alpha+\beta \frac{H^{\dagger} H}{\Lambda^{2}}\right) H L e_{c}$
after EWSB, this becomes:

$$
\begin{gathered}
\left(\alpha+\beta \frac{v^{2}}{2 \Lambda^{2}}\right) \frac{v}{\sqrt{2}} L e_{c}+\left(\alpha+3 \beta \frac{v^{2}}{2 \Lambda^{2}}\right) \frac{h}{\sqrt{2}} L e_{c} \\
y_{S M} \\
(a+i b)
\end{gathered}
$$

So: $\quad(a+i b)=\frac{y_{S M}}{v}+2 \beta \frac{v^{2}}{2 \Lambda^{2}}$

- for light fermions, can have BSM ~ SM for $\wedge \gg v$!

Indirect constraints of CPV Hff couplings: EDM and Higgs rates

CPV Higgs top coupling:

- assuming $S M y_{e}, y_{u}$, y_{d}, strong constraints from EDM, neutron EDM
- hgg and hyp also affected \rightarrow altered Higgs rates

Indirect constraints of CPV Hff couplings: EDM and Higgs rates

CPV Higgs top coupling:

- assuming $S M y_{e}, y_{u}$, y_{d}, strong constraints from EDM, neutron EDM
- hgg and hyp also affected \rightarrow altered Higgs rates

constraints can relax somewhat if light Yukawas, hWW not standard..
[Brod, Haisch, Zupan 1310.1385]

Indirect constraints of CPV Hff couplings: EDM and Higgs rates

CPV Higgs tau coupling:

- current EDM measurements not constraining, even for SM ye
- effect on Higgs production predominantly from $\Gamma_{h} \propto\left(a^{2}+b^{2}\right)$

To better constrain things, need to look at differential distributions

Indirect constraints of CPV Hff couplings: EDM and Higgs rates

CPV Higgs tau coupling:

- current EDM measurements not constraining, even for SM ye
- effect on Higgs production predominantly from $\Gamma_{h} \propto\left(a^{2}+b^{2}\right)$

To better constrain things, need to look at differential distributions

Specifically, work with:

$$
\begin{aligned}
& a=y_{\mathrm{T}, \mathrm{SM}} \cos \Delta \\
& b=y_{\mathrm{T}, \mathrm{SM}} \sin \Delta
\end{aligned}
$$

How do we see $\sin \Delta$?

Indirect constraints of CPV Hff couplings: EDM and Higgs rates

CPV Higgs tau coupling:

- current EDM measurements not constraining, even for SM ye
- effect on Higgs production predominantly from $\Gamma_{h} \propto\left(a^{2}+b^{2}\right)$

To better constrain things, need to look at differential distributions

Specifically, work with:

$$
\begin{aligned}
& a=y_{\tau, S M} \cos \Delta \\
& b=y_{\tau}, S M \sin \Delta
\end{aligned}
$$

How do we see $\sin \Delta$?

Accessing the CPV Hff phase in taus

$$
\supset-m_{\tau} \bar{\tau} \tau-\frac{y_{\tau}}{\sqrt{2}} h \bar{\tau}\left(\cos \Delta+i \sin \Delta \gamma_{5}\right) \tau
$$

Higgs rest frame:

$$
\left(\mathrm{m}_{\mathrm{H}} / 2\right) \overrightarrow{\mathrm{p}} \cdot\left(\overrightarrow{\mathrm{~s}}_{1} \times \overrightarrow{\mathrm{s}}_{2}\right)
$$

$$
\mid \mathcal{M}\left(\left.h \rightarrow \tau^{+}\left(p_{1}, s_{1}\right) \tau^{-}\left(p_{2}, s_{2}\right)\right|^{2} \propto \sin 2 \Delta \epsilon^{\mu \nu \rho \sigma} p_{1 \mu} p_{2 \nu} s_{1 \rho} s_{2 \sigma}\right.
$$

$$
\text { + pieces independent of } \sin \Delta
$$

Accessing the CPV Hff phase in taus

$$
\supset-m_{\tau} \bar{\tau} \tau-\frac{y_{\tau}}{\sqrt{2}} h \bar{\tau}\left(\cos \Delta+i \sin \Delta \gamma_{5}\right) \tau \quad \begin{aligned}
& \text { Higgs rest frame: } \\
& \left(\mathrm{m}_{H} / 2\right) \overrightarrow{\mathrm{p}} \cdot\left(\overrightarrow{\mathrm{~s}}_{1} \times \overrightarrow{\mathrm{s}}_{2}\right)
\end{aligned}
$$

$$
\mid \mathcal{M}\left(\left.h \rightarrow \tau^{+}\left(p_{1}, s_{1}\right) \tau^{-}\left(p_{2}, s_{2}\right)\right|^{2} \propto \sin 2 \Delta \epsilon^{\mu \nu \rho \sigma} p_{1 \mu} p_{2 \nu} s_{1 \rho} s_{2 \sigma}\right.
$$ + pieces independent of $\sin \Delta$

To access CPV, need the τ spins (technically, spin \perp motion)

Accessing the CPV Hff phase in taus

$$
\supset-m_{\tau} \bar{\tau} \tau-\frac{y_{\tau}}{\sqrt{2}} h \bar{\tau}\left(\cos \Delta+i \sin \Delta \gamma_{5}\right) \tau \quad \begin{aligned}
& \text { Higgs rest frame: } \\
& \left(\mathrm{m}_{\mathrm{H}} / 2\right) \overrightarrow{\mathrm{p}} \cdot\left(\overrightarrow{\mathrm{~s}}_{1} \times \overrightarrow{\mathrm{s}}_{2}\right)
\end{aligned}
$$

$\mid \mathcal{M}\left(\left.h \rightarrow \tau^{+}\left(p_{1}, s_{1}\right) \tau^{-}\left(p_{2}, s_{2}\right)\right|^{2} \propto \sin 2 \Delta \epsilon^{\mu \nu \rho \sigma} p_{1 \mu} p_{2 \nu} s_{1 \rho} s_{2 \sigma}\right.$

+ pieces independent of $\sin \Delta$

To access CPV, need the τ spins (technically, spin \perp motion)

- Not directly observed, but spin info is passed on to decay products
- Want: decay mode with sizable BR and that faithfully captures spin info

Accessing the CPV Hff phase in taus

$$
\supset-m_{\tau} \bar{\tau} \tau-\frac{y_{\tau}}{\sqrt{2}} h \bar{\tau}\left(\cos \Delta+i \sin \Delta \gamma_{5}\right) \tau
$$

Higgs rest frame:
$\left(\mathrm{m}_{\mathrm{H}} / 2\right) \overrightarrow{\mathrm{p}} \cdot\left(\overrightarrow{\mathrm{s}}_{1} \times \overrightarrow{\mathrm{s}}_{2}\right)$
\uparrow
$\mid \mathcal{M}\left(\left.h \rightarrow \tau^{+}\left(p_{1}, s_{1}\right) \tau^{-}\left(p_{2}, s_{2}\right)\right|^{2} \propto \sin 2 \Delta \epsilon^{\mu \nu \rho \sigma} p_{1 \mu} p_{2 \nu} s_{1 \rho} s_{2 \sigma}\right.$

+ pieces independent of $\sin \Delta$

To access CPV, need the τ spins (technically, spin \perp motion)

- Not directly observed, but spin info is passed on to decay products
- Want: decay mode with sizable BR and that faithfully captures spin info

Best candidate: $\quad \tau^{ \pm} \rightarrow \rho^{ \pm} \nu, \rho^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}, \quad \mathrm{BR} \sim 26 \%$
A '1 prong' decay, see photons from $\pi^{0} \rightarrow \gamma \gamma$

Accessing the CPV Hff phase in taus

$\rho^{ \pm}$emitted preferentially in τ spin direction, info passed on to decay products $\pi^{ \pm}, \pi^{0}$

Accessing the CPV Hff phase in taus

$\rho^{ \pm}$emitted preferentially in τ spin direction, info passed on to decay products $\pi^{ \pm}, \pi^{0}$
form angle Θ based on triple product:

$$
d \sigma(h \rightarrow \pi \tau) / d \Theta \supset-\cos (\Theta-2 \Delta)
$$

to get maximum effect, need to measure p_{v} to reconstruct p_{T} :

Accessing the CPV Hff phase in taus

$\rho^{ \pm}$emitted preferentially in τ spin direction, info passed on to decay products $\pi^{ \pm}, \pi^{0}$
form angle Θ based on triple product:

$$
d \sigma(h \rightarrow \pi \tau) / d \Theta \supset-\cos (\Theta-2 \Delta)
$$

to get maximum effect, need to measure p_{v} to reconstruct p_{T} :

[Harnik, Martin, Okui, Primulando, Yu 1308.1094]

Accessing the CPV Hff phase in taus at the LHC

- At LHC, we can't measure $\mathrm{p}_{\mathrm{v} . .}$
- If we use the collinear approximation $\left(p_{v} \propto p_{\rho}\right)$, can still form Θ but it reduces to the acoplanarity angle between $\rho^{+} \rho^{-}$decay ex. [Bower et al 0204292, Worek 0305082]

Size of oscillation reduced by $\sim 75 \%$

Accessing the CPV Hff phase in taus at the LHC

Proof of principle analysis:

- signal: $p p \rightarrow h\left(\tau^{+} \tau^{-}\right)+j$, background $Z+j$
- require:

$$
\begin{aligned}
& p_{T, j}>140 \mathrm{GeV},\left|\eta_{j}\right|<2.5 \\
& p_{T, \rho^{ \pm}}>45 \mathrm{GeV},\left|\eta_{\rho^{ \pm}}\right|<2.1 \\
& \mathbb{E}_{T}>40 \mathrm{GeV}, m_{\mathrm{coll}}>120 \mathrm{GeV}
\end{aligned}
$$

- apply flat τ id efficiencies, 50\%, 70\% but neglect other detector response effects

Accessing the CPV Hff phase in taus at the LHC

Proof of principle analysis:
[Harnik, Martin, Okui, Primulando, Yu 1308.1094]

- signal: $p p \rightarrow h\left(\tau^{+} \tau^{-}\right)+j$, background $Z+j$
- require:

$$
\left.\begin{array}{l}
p_{T, j}>140 \mathrm{GeV},\left|\eta_{j}\right|<2.5 \\
p_{T, \rho^{ \pm}}>45 \mathrm{GeV},\left|\eta_{\rho^{ \pm}}\right|<2.1 \\
\mathbb{E}_{T}>40 \mathrm{GeV}, m_{\mathrm{coll}}>120 \mathrm{GeV}
\end{array}\right\} \begin{gathered}
\text { motivated by } 8 \mathrm{TeV} \\
\mathrm{~h}(\pi) \text { search in } 1 \text { jet bin }
\end{gathered}
$$

- apply flat τ id efficiencies, $50 \%, 70 \%$ but neglect other detector response effects

Accessing the CPV Hff phase in taus at the LHC

For different tagging efficiencies, determine:

- \mathscr{L} required to distinguish pure CP-even vs. CP-odd

τ_{h} efficiency	50%	70%
3σ	$L=550 \mathrm{fb}^{-1}$	$L=300 \mathrm{fb}^{-1}$
5σ	$L=1500 \mathrm{fb}^{-1}$	$L=700 \mathrm{fb}^{-1}$
Accuracy $\left(L=3 \mathrm{ab}^{-1}\right)$	11.5°	8.0°

- admixture sensitivity at $3 \mathrm{ab}^{-1}$
- ideally, would like to move beyond collinear approximation to take advantage of Θ vs. $\rho+\rho$ - acoplanarity
(VBF production also studied, T.Han et al 1612.00413)

Accessing the CPV Hff phase in taus at the LHC

For different tagging efficiencies, determine:

- \mathscr{L} required to distinguish pure CP-even vs. CP-odd

τ_{h} efficiency	50%	70%
3σ	$L=550 \mathrm{fb}^{-1}$	$L=300 \mathrm{fb}^{-1}$
5σ	$L=1500 \mathrm{fb}^{-1}$	$L=700 \mathrm{fb}^{-1}$
Accuracy $\left(L=3 \mathrm{ab}^{-1}\right)$	11.5°	8.0°

- admixture sensitivity at $3 \mathrm{ab}^{-1}$
- ideally, would like to move beyond collinear approximation to take advantage of Θ vs. $\rho+\rho$ - acoplanarity
(VBF production also studied, T.Han et al 1612.00413)

Accessing the CPV Hff phase in taus at the LHC

For different tagging efficiencies, determine:

- \mathscr{L} required to distinguish pure CP-even vs. CP-odd

τ_{h} efficiency	50%	70%
3σ	$L=550 \mathrm{fb}^{-1}$	$L=300 \mathrm{fb}^{-1}$
5σ	$L=1500 \mathrm{fb}^{-1}$	$L=700 \mathrm{fb}^{-1}$
Accuracy $\left(L=3 \mathrm{ab}^{-1}\right)$	11.5°	8.0°

- admixture sensitivity at $3 \mathrm{ab}^{-1}$
- ideally, would like to move beyond collinear approximation to take advantage of Θ vs. $\rho+\rho$ - acoplanarity
(VBF production also studied, T.Han et al 1612.00413)

Accessing the CPV Hff phase in taus at the LHC

More realistic follow up, includes detector effects via Delphes:

Accessing the CPV Hff phase in taus at the LHC

More realistic follow up, includes detector effects via Delphes:
[Askew, Jaiswal, Okui, Prosper, Sato 1501.03156]

- degradation from angular resolution is minor (4\% oscillation degradation)
- larger effect comes from MET resolution which causes Z+j background to leak into signal region. Can be improved upon using more sophisticated techniques
(i.e. MVA)

Accessing the CPV Hff phase in taus at the LHC

More realistic follow up, includes detector effects via Delphes:
[Askew, Jaiswal, Okui, Prosper, Sato 1501.03156]

- degradation from angular resolution is minor (4\% oscillation degradation)
- larger effect comes from MET resolution which causes Z+j background to leak into signal region. Can be improved upon using more sophisticated techniques (i.e. MVA)

Accessing the CPV Hff phase in taus at the LHC

More realistic follow up, includes detector effects via Delphes:
[Askew, Jaiswal, Okui, Prosper, Sato 1501.03156]

- degradation from angular resolution is minor (4\% oscillation degradation)
- larger effect comes from MET resolution whic to leak into signal region. Can be improved u sophisticated techniques (i.e. MVA)

Accessing the CPV Hff phase in taus at the LHC

More realistic follow up, includes detector effects via Delphes:
[Askew, Jaiswal, Okui, Prosper, Sato 1501.03156]

- degradation from angular resolution is minor (4\% oscillation degradation)
- larger effect comes from MET resolution whic to leak into signal region. Can be improved u sophisticated techniques (i.e. MVA)
- studied collinear approx.,find it's likely the limit at LHC
- pileup effects not studied

Accessing the CPV Hff phase in taus at the LHC

Some help by including other modes:

- for τ with displaced vertices, a second triple product can be defined
[Berge, Bernreuther 0812.1910]

$$
\text { Ex: } \tau^{ \pm} \rightarrow \pi^{ \pm}+\nu
$$

PV

$$
\varlimsup_{\vec{p}_{\pi}}
$$

Accessing the CPV Hff phase in taus at the LHC

Some help by including other modes:

```
Ct
```

- for τ with displaced vertices, a second triple product can be defined

Accessing the CPV Hff phase in taus at the LHC

Some help by including other modes:

```
CT}\mp@subsup{\tau}{\tau}{~
```

- for τ with displaced vertices, a second triple product can be defined

Accessing the CPV Hff phase in taus at the LHC

Some help by including other modes:

- for τ with displaced vertices, a second triple product can be defined
[Berge, Bernreuther 0812.1910]
Ex: $\tau^{ \pm} \rightarrow \pi^{ \pm}+\nu$
$\hat{p}_{\pi^{-}} \cdot\left(\hat{n}_{\perp}^{+} \times \hat{n}_{\perp}^{-}\right)$
i.e acoplanarity of ($\mathrm{n}^{-}-\pi^{-}$) and ($\mathrm{n}^{+}-\pi^{+}$) planes

Accessing the CPV Hff phase in taus at the LHC

Some help by including other modes:

- for τ with displaced vertices, a second triple product can be defined

Ex: $\tau^{ \pm} \rightarrow \pi^{ \pm}+\nu$
$\hat{p}_{\pi^{-}} \cdot\left(\hat{n}_{\perp}^{+} \times \hat{n}_{\perp}^{-}\right)$
i.e acoplanarity of ($\vec{n}^{-}-\pi^{-}$) and ($\mathrm{n}^{+}-\pi^{+}$) planes
[Dell'Aquila, Nelson '89]

- approximates τ decay plane orientation, which is sensitive to CP mix
- can be formed in either lab frame or $\pi^{+}-\pi^{-}$zero momentum frame
- works for any τ decay mode, can be mixed with previous method

Accessing the CPV Hff phase in taus at the LHC

Combining all modes \& methods: [Berge, Bernreuther, Kirchner 1510.03850]

- $\mathrm{gg} \rightarrow \mathrm{h} \rightarrow \mathrm{\tau}^{+} \mathrm{T}^{-}$vs. Drell-Yan background
- $\mathrm{m}_{\pi}>100 \mathrm{GeV}, \mathrm{pT}>20 \mathrm{GeV}|\eta|<2.5$ for all charged objects, Gaussian smearing
$3 \mathrm{ab}^{-1}$ sensitivity: $\Delta \sim 4$ (assuming 100\% tau tagging?)

Accessing the CPV Hff phase in taus at the LHC

Combining all modes \& methods:
[Berge, Bernreuther, Kirchner 1510.03850]

- $\mathrm{gg} \rightarrow \mathrm{h} \rightarrow \mathrm{T}^{+} \mathrm{T}^{-}$vs. Drell-Yan background
- $\mathrm{m}_{\pi}>100 \mathrm{GeV}, \mathrm{pT}>20 \mathrm{GeV}|\eta|<2.5$ for all charged objects, Gaussian smearing
$3 \mathrm{ab}^{-1}$ sensitivity: $\Delta \sim 4$ (assuming 100\% tau tagging?)

Would be great to know how these sensitivities hold up in more realistic studies

- t reconstruction obviously crucial [see talk by Demers]
[Zanzi 1703.10259]

	ATLAS Simulation Tau Particle Flow			Purity Matrix $Z / \gamma^{*} \rightarrow \tau \tau$	
	0.7	16.5	7.7	15.7	58.8
	0.2	1.2	0.2	85.2	12.9
	1.1	32.2	63.3	0.2	$0.4-$
$h^{ \pm} \pi^{0}$		73.5	18.4	0.4	$0.4-$
59] $n^{ \pm}$	70.4	24.5	2.2	0.9	0.1
	$h^{ \pm}$	$h^{ \pm} \pi^{0}$	$h^{ \pm} \geq 2 \pi^{0}$	$3 h^{ \pm}$	$3 h^{ \pm} \geq 1 \pi^{0}$

Accessing the CPV Hff phase in taus at the HE- LHC: first thoughts

HE-LHC: $h+j$ rate increases by roughly a factor of 3.5 for the 'proof of principle' cuts: faster increase than $\mathrm{Z}+\mathrm{j}$

p_{T} cut (GeV) on h+j for	NLO cross section for 27 TeV pp collider (MCFM 8.0)	Signal enhancement compared to 14 TeV, $\mathrm{p}_{\mathrm{T}}>140 \mathrm{GeV}$
100	12.1 pb	$6.05 \times$ 140
150	6.96 pb	$3.48 \times[$ Our original working point]
200	3.12 pb	$3.06 \times$
250	2.08 pb	$1.72 \times$

Much higher rate of boosted Higgses:
[F. Yu, 2017 HE/HE-LHC workshop]

- pros: can apply jet substructure technology, perhaps provide new insight into τ CP variables; more/better instrumented displaced t's?
- cons: everything boosted means everything overlapping

What about CPV Hff phase in tops?

- if light Yukawa are < SM values, can loosen EDM constraints
- loosening Higgs rate constraints requires non-SM hWW or other BSM
- directly probe $\sin \Delta_{t}$ in $t \bar{t} H$ production (or $t / \overline{\mathrm{t}} \mathrm{H}$)

What about CPV Hff phase in tops?

- if light Yukawa are < SM values, can loosen EDM constraints
- loosening Higgs rate constraints requires non-SM hWW or other BSM
- directly probe $\sin \Delta_{t}$ in $t \bar{t} H$ production (or $t / \bar{t} H$)
- $\sin \Delta_{t} \neq 0$ can be seen many simple observables, such as $m_{\mathrm{t} \mathrm{t}}, \mathrm{p}_{\mathrm{T}, \mathrm{h}}, \Delta \phi_{\mathrm{tI}}-$ but require reconstructing tops \& Higgs...

What about CPV Hff phase in tops?

- if light Yukawa are < SM values, can loosen EDM constraints
- loosening Higgs rate constraints requires non-SM hWW or other BSM
- directly probe $\sin \Delta_{\mathrm{t}}$ in $\mathrm{t} \overline{\mathrm{t}} \mathrm{H}$ production (or $\mathrm{t} / \mathrm{t} \mathrm{H}$)
- $\sin \Delta_{t} \neq 0$ can be seen many simple observables, such as $m_{\mathrm{t} \mathrm{t}}, \mathrm{p}_{\mathrm{T}, \mathrm{h}}, \Delta \phi_{\mathrm{tt}}$ - but require reconstructing tops \& Higgs...

[Boudjema et al 1501.03157]

What about CPV Hff phase in tops?

- if light Yukawa are < SM values, can loosen EDM constraints
- loosening Higgs rate constraints requires non-SM hWW or other BSM
- directly probe $\sin \Delta_{t}$ in $t \bar{t} H$ production (or $t / \bar{t} H$)
- $\sin \Delta_{t} \neq 0$ can be seen many simple observables, such as $m_{\mathrm{t} \mathrm{t}}, \mathrm{p}_{\mathrm{T}, \mathrm{h}}, \Delta \phi_{\mathrm{tt}}$ - but require reconstructing tops \& Higgs...

Some recent $\overline{\text { t }}$ th observables that don't require complete event reconstruction:

$$
\begin{gathered}
\left.\Delta \phi_{\ell^{+} \ell^{-}}\right|_{p_{T, h}>200 \mathrm{GeV}} \quad \text { [Buckley, Goncalves 1507.07926] } \\
\cos \left(\Delta \theta_{h}\left(\ell^{+}, \ell^{-}\right)\right)=\left(\hat{p}_{h} \times \hat{p}_{\ell^{+}}\right) \cdot\left(\hat{p}_{h} \times \hat{p}_{\ell^{-}}\right) \\
\text {[Boudjema et al 1501.03157] } \\
\text { inspired by } \Delta \phi_{\ell+\ell-} \text { sensitivity to spin correlations in pp } \rightarrow \overline{\mathrm{tt}}
\end{gathered}
$$

What about CPV Hff phase in tops?

[Buckley, Goncalves 1507.07926]

sensitivity at large Higgs boost, good for HE-LHC...
[Boudjema et al 1501.03157]

sensitive to sign of Δ_{t}
[see talk by Goncalves]

Conclusions

CPV Hfff couplings: sure sign of new physics, present in simple UV completions and desired for EW baryogengesis
@LHC: collider environment limits study to $h \bar{\tau} \tau, h \bar{t} t$

Conclusions

CPV Hff couplings: sure sign of new physics, present in simple UV completions and desired for EW baryogengesis
@LHC: collider environment limits study to hīt, h $\overline{\mathrm{t}}$ t

```
easy to arrange for relatively
    large BSM
```

tightly constrained (indirectly) by EDM, nEDM, though \exists caveats

Spin correlation information communicated to f decay products (prompt or displaced), picked out through differential distributions \rightarrow lots of statistics needed \rightarrow HL-LHC arena

Conclusions

CPV Hff couplings: sure sign of new physics, present in simple UV completions and desired for EW baryogengesis
@LHC: collider environment limits study to hīt, h $\overline{\mathrm{t}}$ t

```
easy to arrange for relatively
    large BSM
```

tightly constrained (indirectly) by EDM, nEDM, though \exists caveats

Spin correlation information communicated to f decay products (prompt or displaced), picked out through differential distributions \rightarrow lots of statistics needed \rightarrow HL-LHC arena

Some preliminary studies, but plenty of room for dedicated studies (pileup effects, tagging techniques + substructure, etc.) at LHC and beyond

HL/HE - LHC complementarity with future EDM experiments

Range of CPV Hff couplings after future EDM/ nEDM projected bounds (factor of 300 improvement)

ht̄t, just $3^{\text {rd }}$ gen couplings
[Brod, Haisch, Zupan 1310.1385]

At a Higgs factory

- Here we can reconstruct the entire event (up to twofold ambiguity)

$\sigma_{e^{+} e^{-} \rightarrow h Z}$	0.30 pb
$\operatorname{Br}\left(h \rightarrow \tau^{+} \tau^{-}\right)$	6.1%
$\operatorname{Br}\left(\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu\right)$	26%
$\operatorname{Br}(Z \rightarrow$ visibles $)$	80%
$\mathrm{~N}_{\text {events }}$	990
Accuracy	4.4°

TABLE I: Cross section, branching fractions, expected number of signal events, and accuracy for measuring Δ for the ILC with $\sqrt{s}=250 \mathrm{GeV}$ and $1 \mathrm{ab}^{-1}$ integrated luminosity.

Another way to understand $\cos (\Theta-2 \Delta)$

$$
\text { Can rewrite CPV htt as } \quad e^{i \Delta}|++\rangle+e^{-i \Delta}|--\rangle
$$

If we measure polarization along momenta

Not sensitive to Δ

Another way to understand $\cos (\Theta-2 \Delta)$
Can rewrite CPV hit as

$$
e^{i \Delta}|++\rangle+e^{-i \Delta}|--\rangle
$$

If we instead polarization \perp momenta, with angle Θ between polarization planes of $\tau+$ and t -:

$$
\propto A+B \cos (\Theta-2 \Delta)
$$

(explanation thanks to R. Harnik)

