
HEPCloud Resource Provisioning
Anthony Tiradani
OSG Blueprint Meeting
21 February 2018

• Fermilab HEPCloud instance currently supports provisioning compute resources.
– Delivered in the form of a glideinWMS pilot
– Uses the glideinWMS Factory for provisioning
– Architecture allows for the use of other provisioners

• HEPCloud can provision resources from Cloud Providers, OSG sites, and HPC
sites.
– On-going effort to use HTCondor-CE as an submission point into some HPC sites
– Currently using the HTCondor SSH interface to submit to NERSC

• HEPCloud future work:
– Provisioning storage and data movement infrastructures
– Provisioning services other than batch computing related services (talking with VC3

project)

HEPCloud Target Resources

2/21/18 Anthony Tiradani | HEPCloud Resource Provisioning2

• HEPCloud will be able use dedicated, opportunistic, pay-per-use, and allocation-
based provisioning models.

• Dedicated resources are resources that already exist, therefore do not need to be
provisioned. These resources are treated as preferred resources. All other
resources are considered expansion resources.

• Opportunistic models are handled similarly to the glideinWMS model
• Pay-per-use models go through an cost optimization algorithm to select the most

cost effective range of resources that meet the workflow requirements
• Allocation based models are treated as a simplified pay-per-use algorithm
• HEPCloud is developing an economic model in an attempt to do apples-to-apples

comparisons of the “cost” of computing between the different models.

HEPCloud Allocation Models

2/21/18 Anthony Tiradani | HEPCloud Resource Provisioning3

• The Fermilab instance of HEPCloud makes use of the glideinWMS
• As noted in the glideinWMS talk, glideinWMS does not allocate resources, it

generates resource requests
• Allocation of resources to jobs is done by HTCondor
• HEPCloud keeps track of its use of:
– Allocations similar to that on HPCs
– Budgeting and finances for Clouds
– This requires code and policy configuration (on-going task targeted for late 2018)

• Resource request distribution is based on job requirements, resource provider
capabilities, estimated costs, budgets, etc.

• Resource locations are manually added at the moment
– Cloud resources require on-demand infrastructure, e.g. CVMFS
– Each and every HPC is unique, requiring vetting and curation

HEPCloud Resource Allocation

2/21/18 Anthony Tiradani | HEPCloud Resource Provisioning4

• The HEPCloud Architecture allows for multiple provisioners.
– Have looked at rvgahp[1] for pull models (glideinWMS project is currently looking at it as

well)
– glideinWMS is primarily a push model provisioner

• HEPCloud provisions based on needs.
– Currently, single core, whole node, multi-node pilots are in use

[1] https://github.com/juve/rvgahp

HEPCloud Resource Allocation (cont.)

2/21/18 Anthony Tiradani | HEPCloud Resource Provisioning5

• HEPCloud is developing the Decision Engine (DE).
– The DE Framework allows for deterministic, reproducible, decision making workflows

called Decision Channels
– Decision Channels make up the logic by which decisions are made to request (or not)

resources from a provider
– Decision Channels may depend on other Decision Channels
– Decision Channels are made up of contributed modules and configured “business rules”

• Decision Channel modules and configurations are being developed for the
Fermilab instance

• Once Fermilab has more experience operating the DE, a set of reference modules
and configurations will be released

HEPCloud Decision Engine

2/21/18 Anthony Tiradani | HEPCloud Resource Provisioning6

• HEPCloud uses the glideinWMS pilot to set up the runtime environment
– For cloud resources, the glideinWMS project created a pseudo-service that reads required

information from the “user-data” and bootstraps the pilot
– For HPC resources, HEPCloud is using glideins to provision multiple machines
– All resources report back to the HEPCloud pool

• HEPCloud anticipates being able to set environments through the use of VMS
(Cloud) and containers (HPC, Cloud if deemed useful).

Runtime Content

2/21/18 Anthony Tiradani | HEPCloud Resource Provisioning7

• glideinWMS provisioning algorithm optimized for the traditional grid model
• HEPCloud allows for BYOA (Bring Your Own Algorithm)
– Facility/instance driven
– Capabilities exposed only to instance admins
– Integrates various monitoring sources as part of the decision making process

• HEPCloud architecture can expand beyond batch computing
– Long term plans include

• investigating data movement
• provisioning other computing environments

– Can expand to use multiple types of provisioners

Differences w.r.t. glideinWMS

2/21/18 Anthony Tiradani | HEPCloud Resource Provisioning8

• Web cache available
– Absence can be worked around (similar to what we do at NERSC)

• Work arounds not sustainable or desirable
– Have to build your own infrastructure in cloud, but it is available

• Provide container capability (e.g. Singularity, Shifter, etc.)
– Would be nice if sites would standardize on a solution and configuration

• For example, NERSC only allows Shifter, almost all other HPC sites HEPCloud has looked at
only allow Singularity

• The Singularity configurations are not yet standardized at sites
• The Fermilab instance of HEPCloud uses the glideinWMS factory to provision
– This means that HEPCloud can support whatever submission endpoint HTCondor

supports

Requirements for Resource Providers

2/21/18 Anthony Tiradani | HEPCloud Resource Provisioning9

Backup Slides

2/21/18 Anthony Tiradani | HEPCloud Resource Provisioning10

• Specific to Fermilab
• Concentrates on expanding

batch computing
• New component: Decision

Engine (DE)
• Integrates Monitoring as a

feedback loop informing
decisions

• Plan for production status in late
2018

Fermilab HEPCloud Instance Architecture

2/21/18 Anthony Tiradani | HEPCloud Resource Provisioning11

• In the Fermilab context, replaces the glideinWMS Frontend
• Plan for production status in late 2018

HEPCloud Decision Engine (DE) Architecture

2/21/18 Anthony Tiradani | HEPCloud Resource Provisioning12

