LEM Field simulations

Carlos Moreno

GOAL

- LEM electrostatic simulation: identify the most potentially sensitive areas and understand the effect of the different design parameters on the electric field configuration.
- In this first attempt, we have studied the impact on electric field configuration of the variation of the Guard Ring (GR) and the Clearance (CI).
- Next steps: Simulations of the HV connectors and the pillars

SEM Images

Geometric model - Rim

Settings for the simulation

 Anode: V = 0 V
 E. Field ~ 5 kV/cm

 LEM Up: V = -1000 V
 E. Field ~ 30 kV/cm

 LEM Down: V = -4000 V
 E. Field ~ 30 kV/cm

 FR4 - ε = 4.4
 GAr - ε ~ 1

Current LEM design

GR = 2 mm & Cl = 2 mm

GOL-0.002, GI-0.002, Barrace, Elecarcherenthern rowenty, Sensoar, Elecarcipotender (*)

Current LEM design GR = 2 mm & CI = 2 mm

×10³ GR=0.002, CI=0.002 Surface: Electric field norm (kV/cm) Contour: Electric potential (M 50 ₆₀m -0.12 ×10³ -0.37 -0.12 45 1200 -0.61-0.37 1150-0.86 -0.6140 -C X6 -1.11100 1.1-1.35 1050 50 35 -1.35 -1.591000 -1.59 -1.84 1.84 50 30 950 -2.08-2.08900 -2.33 -2.3325 40 -2.57850 -2.57 -2.82-2.02 20 000 -3.06 30 3.06 750 -8.31 -3.31 15 700 -3.55 -3.55 20 -3.0 -3.8 650 10 -1.04 4.04 600 10 4.29 -4.29 -1.53 550 4.53 μm 4.78 1700 1800 1900 2000 2100 2200 2300 2400 2500 2500 -3000 -2000 -1000 1000 2000 3000 4000 #m 0 GR=0.002, CI=0.002, Surface: Electric field norm (KWem), Contour, Electric potential (V) SR=0.002, Cl=0.002_Surface_Electric field norm (kWcm)_Contour: Electric potential (V) Mm. $\times 10^8$ ×10⁸ 1300 -0.12 -0.37 -0.61 -0.86 -11 -0.12 -0.37 -0.61 -0.80 200 1250 45 180 1200 40 -1.1160 1150 -1.35 1.35 35 -1.59 -1.53140 1100 1.84 1.84 30 2.08 -2.08 120 1050 2.33 -2.3325 2.57 100 -2.57 1000 2.82 -2.82 20 80 -3.06 950 -3.06H -3.31 3.31 15 60 900 -0.55 -3.55 -3.8 -3.8 10 40 850 4.04 -4.64 -4.29 4.29 800 204.58 -1.53 -4.78 -4.78750 -400 -300 -200 -100 0 100 200 300 μm

-1500 /^µm 2500 -2400-2300 -2200-2100-2000 -1900-1800-1700-1600

Electric field norm (kV/cm)

Effect of the Clearance

- We compute the field on the surface of the copper plate of the LEM in the two regions drawn above.
- We fix the Guard Ring at 2 mm and compare the field for different values of the Clearance.
- Same behavior in both regions for all values of CI.

Effect of the Guard Ring in Last Hole

- The field in the last hole decreases as we increase the GR for values GR < 1 mm.
- Above 1 mm the field in this region does not change with the GR for Clearance above 2 mm.
- For CI < 2 mm the field shows a slight decrease from GR = 2 mm to GR = 3 mm.

Effect of the Clearance in the Field near Anode Surface

 For clearance up to 3 mm, the maximum field increases when we increase the Clearance. For values above 3 mm the maximum field decreases with Cl, but a constant field of ~10 kV/cm appears in the region between FR4 and anode.

Electric Tield Norm (KV/CM)

with constant electric field.

-4000 x-coordinate (um)

-2000

-10000

-8000

-6000

Conclusions

- The Clearance barely affects the field in the beginning of the Guard Ring or the Last Hole.
- For Clearance above 1 mm, the field in the Last Hole reaches its minimum value with Guard Ring of 1 mm, and stays the same for higher values of GR.
- A guard ring above 1mm guarantees the minimum electric field on the last hole and on the end of the guard ring

BACK UP

Current design - GR = 2 mm & Cl = 2 mm

Field between LEM and Anode

- We compute the electric field norm along a horizontal line between LEM and Anode.
- We both study the effect of the CI with fixed GR (above) and the effect of the GR with fixed CI (below).
- For different values of GR the field exhibits the exact same behavior.
- As we increase the CI, the field between the insulator and the anode is also increased.

14

Effect of the Guard Ring in the beginning of the Guard Ring

Electric field norm (kV/cm)