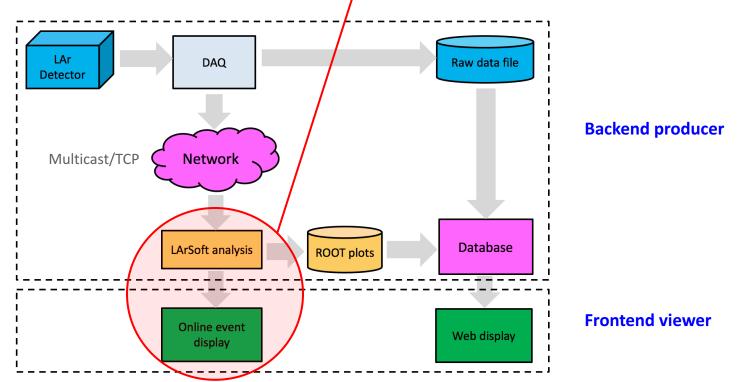
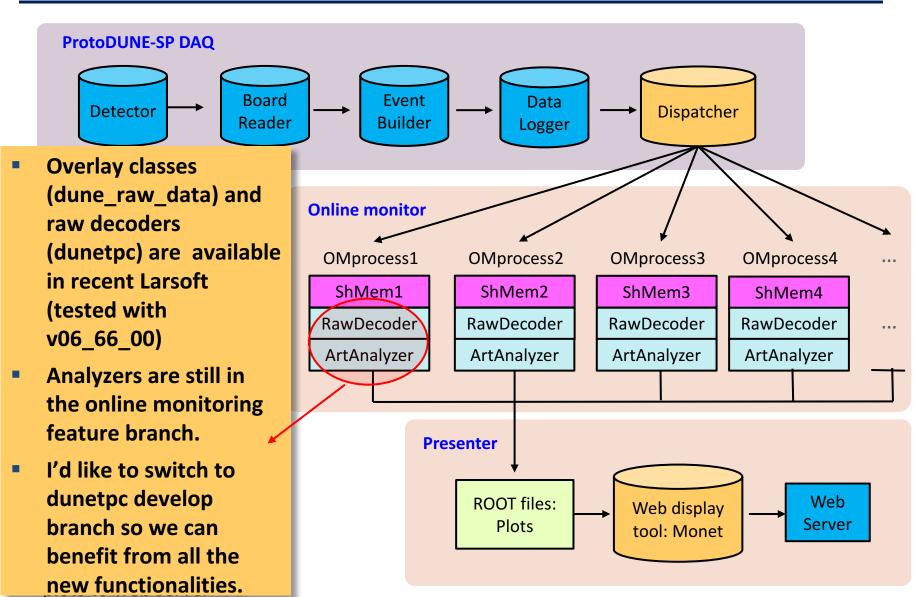
UC**DAVIS**

Online data quality monitoring Notes for DQM discussion

Jingbo Wang UCDAVIS UNIVERSITY OF CALIFORNIA


DQM overview and p3s tutorial, Feb 2, 2018, CERN Origin: <u>https://indico.fnal.gov/event/15969/contribution/33/material/slides/0.pdf</u> DUNE-FD DAQ "design" workshop, January 26, 2018, Oxford

Online monitoring


- The online monitor analyzes live data as it passes through the DAQ. It updates at regular intervals to ensure performance and indicate any possible problem.
- It allows us to view a lot of low-level information, such as:
 - Pedestal and noise level of the readout electronics
 - Waveform-level performances: Mean/RMS of ADCs, FFT spectrum...
- It allows us to debug the electronics and detectors right away if there is something wrong.
- Basic online monitoring framework has been built for ProtoDUNE-SP.
 Tools developed can be reused by DUNE.

General architecture

- The framework will be written in Art and will be compatible with LArSoft
- "Larsoft analysis" can be immediately reused by offline DQM (p3s)
- How to implement "Online event display" is under discussion. If the event display tool is written in Larsoft using ROOT library, it can be shared by online and offline DQMs.
- An online event display tool is beneficial for quick check of the data quality

An example: ProtoDUNE-SP framework

Candidate monitoring metrics

General monitoring

- Number of subdetectors with data
- Event size vs "time"
- Trigger rate vs "time"

- ✓ Latency: ~seconds from the trigger production
- ✓ Tools: Artdaq, Larsoft, ROOT

Event monitoring

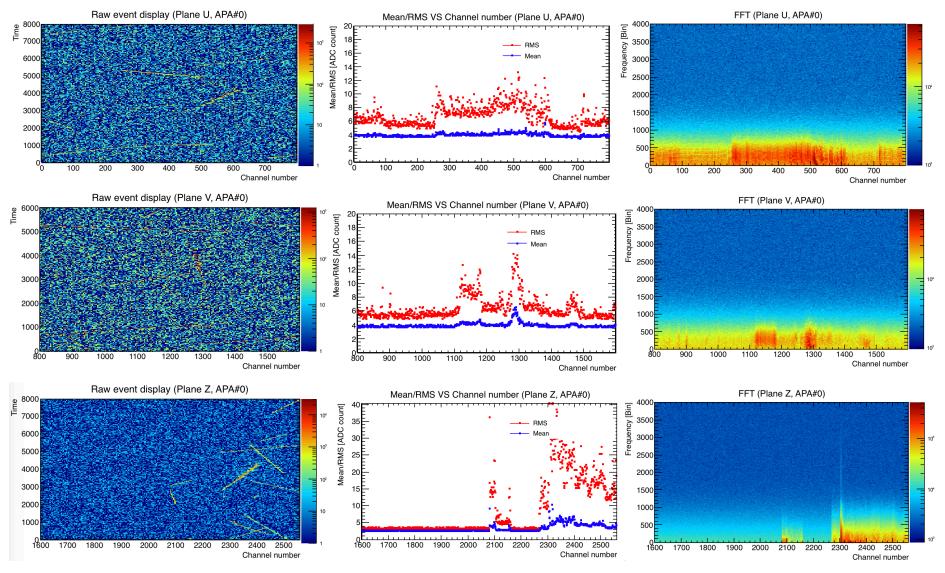
- Raw event display in three views for each APA
- ADC Mean/RMS vs channel number
- FFT of waveforms vs channel number
- Stuck bits fraction
- Trigger type

- Already available in online monitoring
- Can be immediately reused by p3s

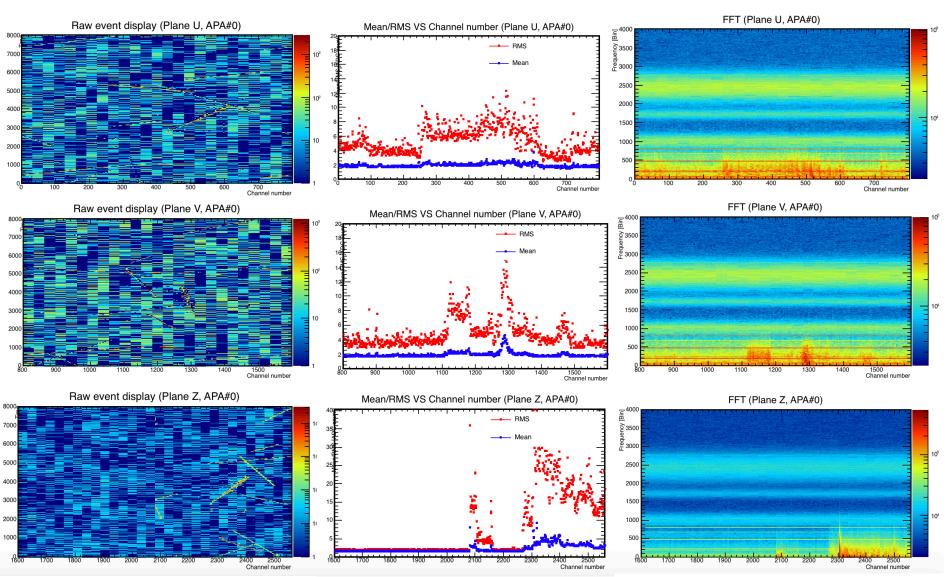
System diagnostic information (for electronics and detector experts)

- DAQ system functionality.
- Hardware configuration (gain, peaking time, threshold:
- Front end electronics/sensor functionality (error code)
- Very important but not ready yet

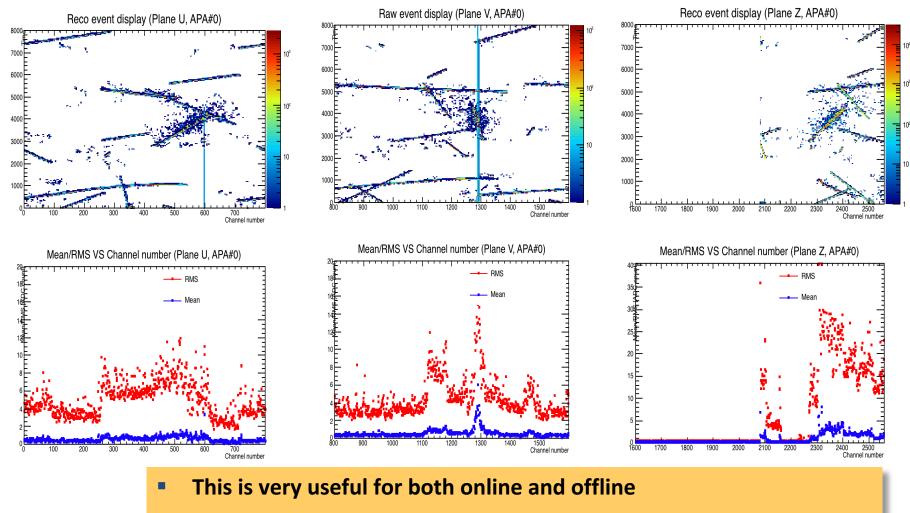
RCE/FELIX in ProtoDUNE-SP


Raw decoder (art producer module)

- All ADC values
- WIB-level numbers: crate, slot, fiber
- Expecting more electronics diagnostic input: asic ID, asic channel


Analyzers (art analyzer modules)

- Raw event display in three views
- ADC Mean/RMS VS channel ID for each view in each APA (2D histogram)
- Profiled histogram of the ADC Mean/RMS
- FFT spectrum VS channel ID (2D histogram)
- Expecting more requests from cold electronics experts

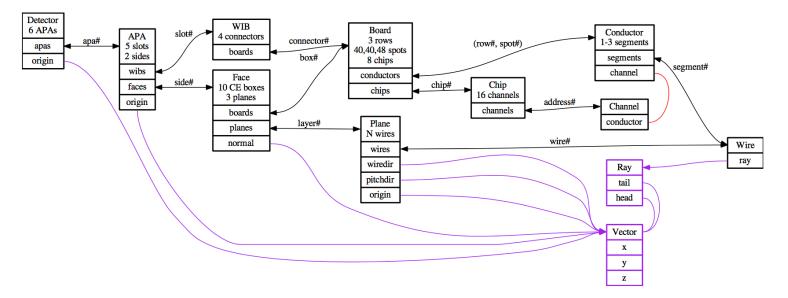

Test with exponential noise model

Test with coherent noise model

ProtoDUNE-SP noise removal

Shall we do

We need a better event display tool (discussed with David Adams)


Channel map

- Channel man is important for tracking the entire data flow over the electronics
- Offline channel number is unique for each wire.
- Preferred plots:
 - Mean/RMS vs Offline channel number
 - Crate/slot/fiber/FEMB/Chip/ASIC vs Offline channel number

electronics.

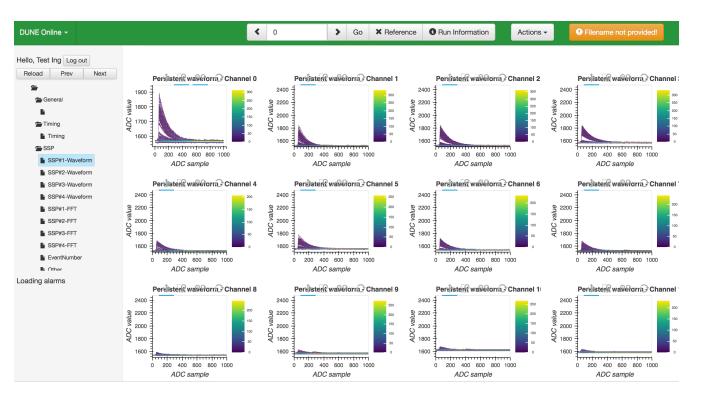
• The channel map service will provide functions to obtain all the channel numbers

Graph of ProtoDUNE-SP detector element connectivity

Channel map

Crate /APA	Slot /WIB	Fiber /FEMB	FEMB Channe	Chip	Chip Channe	ASIC	ASIC Channel	Offline channel
0	1	0	118	7	6	0	6	630
0	1	0	119	7	7	0	7	631
0	1	0	120	7	8	1	0	632
0	1	0	121	7	9	1	1	633
0	1	0	122	7	10	1	2	634
0	1	0	123	7	11	1	3	635
0	1	0	124	7	12	1	4	636
0	1	0	125	7	13	1	5	637
0	1	0	126	7	14	1	6	638
0	1	0	127	7	15	1	7	639
0	1	1	0	0	0	0	0	640
0	1	1	1	0	1	0	1	641
0	1	1	2	0	2	0	2	642
0	1	1	3	0	3	0	3	643
0	1	1	4	0	4	0	4	644
0	1	1	5	0	5	0	5	645
0	1	1	6	0	6	0	6	646
0	1	1	7	0	7	0	7	647
0	1	1	8	0	8	1	0	648
0	1	1	9	0	9	1	1	649
0	1	1	10	0	10	1	2	650
0	1	1	11	0	11	1	3	651
0	1	1	12	0	12	1	4	652
0	1	1	13	0	13	1	5	653
0	1	1	14	0	14	1	6	654
0	1	1	15	0	15	1	7	655
0	1	1	16	1	0	0	0	656
0	1	1	17	1	1	0	1	657
0	1	1	18	1	2	0	2	658
0	1	1	19	1	3	0	3	659
0	1	1	20	1	4	0	4	660
0	1	1	21	1	5	0	5	661
0	1	1	22	1	6	0	6	662
0	1	1	22	1	7	0	7	663

- Placeholder channel map service and map file are prepared in dune_raw_data for ProtoDUNE-SP
- Raw decoder maps the WIBlevel information to the offline channel number (crate:slot:fiber:FEMB -> offline channel number)
- Offline channel number is then mapped to all the other useful numbers (for example Chip ID, ASIC ID, ASIC channel, APA, plane...)
- Need to coordinate with the detector installation team and the electronics experts.


Web-page display tool

- Web-page display allows for easy monitoring from everywhere without connecting to remote machines
- In practice, it shall:
 - Periodically update the content that is static for some period of time
 - Provide options to display low and high resolution plots (this is userselectable)
 - Provide a database to manage the data flow and configure the web display
 - Provide an highly interactive web-page for users to configure their request.
 - Auto refresh time
 - Run and sub-run number
 - Detector elements
 - Trigger type
 - Alarm conditions
 - Other suggestions?

Similar requirements apply to the event display tool

ProtoDUNE-SP web display: Monet

- Proto-DUNE is using a modified version of Monet developed by LHCb.
- Monet is written in python and has several user cases. Its PromptDQM case is hacked for Proto-DUNE-SP online monitoring
- Folder/page/histogram structure allows to organize plots for different categories of users: shifter, expert, special studies...
- Moving towards a simple database which manages the data (still under discussion)

Multi-process running

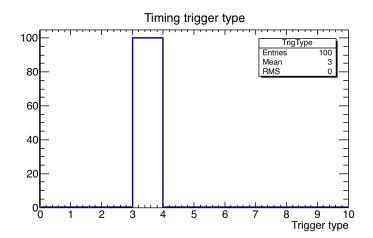
- The online modules must be very efficient since the monitoring needs to allow supervision of the live data
- A good design of the Multi-processing functionality allows faster running and scalability to larger systems
- Art doesn't support multi-core running. For ProtoDUNE-SP, we chose to implement the multi-process feature using shell scripts
 - Every process runs a single fcl file
 - Pre-scaler filter to assign events to different processes
 - Shell scripts to run and kill the processes
- In DUNE-SP FD, it would be beneficial to develop a more advanced multi-process task manager (progress underway for ProtoDUN-SP)
 - Decides which computer and which CPU core to use
 - Checks the status of memory cost of each process
 - Runs commands to start, pause, and terminate a process

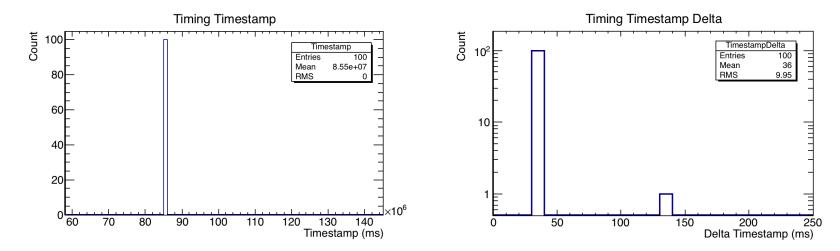
Can we make use of p3s for online purpose?

From online to offline

- The data access library developed for the raw data in ProtoDUNE-SP has been packed as a ups product which is now included by dunetpc.
- The offline monitoring has started testing the raw decoders developed for the online monitoring.
- The offline monitoring platform "p3s" has been installed and tested in the CERN machines.
- Anything that is not affordable to the online monitoring will be moved to p3s.

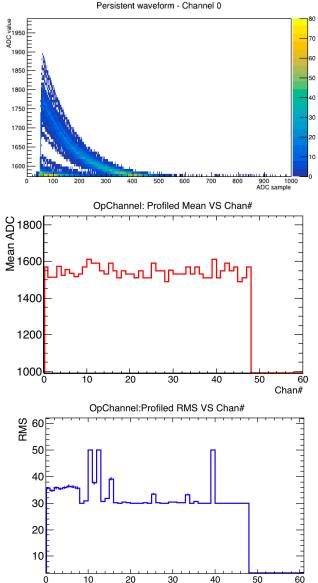
Summary


- A basic online monitoring framework has been built for ProtoDUNE-SP (still under development)
 - Artdaq/LArSoft based raw decoders and data analyzers
 - Web-display tool to present the monito
- Can we implement this for DUNE FD?
 - I believe YES, but improvements are ne
- Which part is useful for DUNE FD?
 - A lot will be common: detectors, electro tools...
- What's the requirements for DUNE FD¹
 - Data transfer service to share data via network
 - Database server to organize the online monitoring configuration
 - Interactive web-page display
 - Strategy for high performance computing


- Data access library is available in LArSoft (tested)
- All the online monitoring modules can be reused by p3s
- Both online and offline need a better designed event display tool

Timing Board in ProtoDUNE-SP

- Raw decoder (art producer modules)
 - Time stamp of the timing fragment
 - Time difference between two consecutive fragments
 - Trigger type
- Analyzers (art analyzer modules)
 - Suggestion?



Plots added by Philip Rodrigues

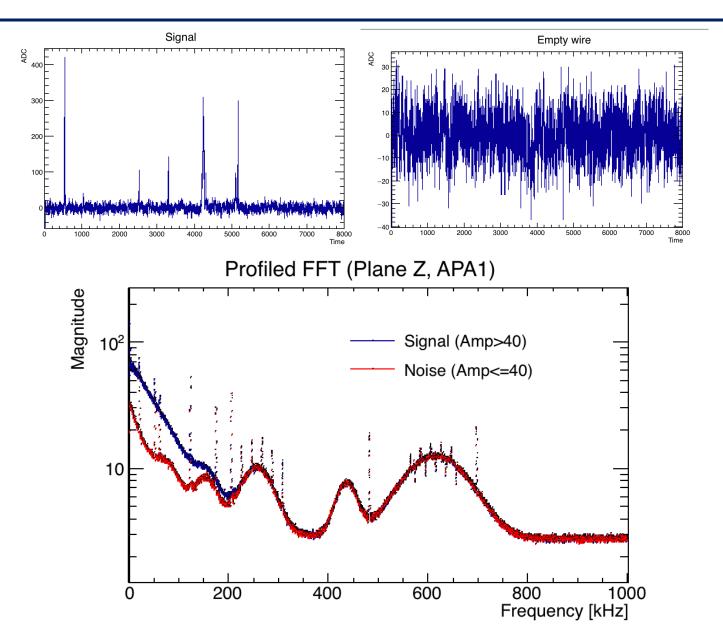
SSP in ProtoDUNE-SP

- Raw decoder (art producer module)
 - All ADC values
 - Number of packets per event
 - Peak (from metadata) spectrum per channel
 - Area (from metadata) spectrum per channel
 - Area (from metadata) spectrum per channel
 - One waveform per channel per file
 - Trigger type histogram (internal, external)
 - Persistent waveforms
 - More
- Analyzers (art analyzer modules)
 - ADC Mean/RMS VS channel ID (2D plot)
 - Profiled histogram of the ADC Mean/RMS
 - Peak time VS channel ID
 - FFT per channel

Chan#

Preliminary plots in Monet: SSP

Event number, ADCs, Npackets, frequency, Trigger type, FFT


DUNE Online -			ierence 🖲 Run Information Actions -		
Hello, Test Ing Log out Reload Prev Next General Timing	Other		Page Information Rendering Info Kave all		
SSP	SSP: EventNumber	SSP: All_ADC_Values	SSP: n_event_packets		
FFT Cother FELIX RCE TPC	400 300 200 100 0 200 0 200 0 200 0 200 0 0 200 0 0 0 0 0 0 0 0 0 0 0 0	5.000e+5 4.000e+5 3.000e+5 2.000e+5 0.000e+5 0.000e+0 0 1000 2000 3000 4000	2 30 2 25 0 9		
Loading alarms	Packets frequency 5000 4000 4000 4000 0 0 0 0 0 0 0 0 0 0 0 0	Trigger type - Channel 0			

Coherent Noise Model

- An imitation of the coherent noise obtained from 3x1x1 data
- The Coherent noise model is characterized by a series of wide gaussian bumps and a number of discrete narrow lines.
- Coherent noise = exponential background + constant offset + Gaussian peaks

FFT of coherent noise

