
Created by: Maxim Potekhin potekhin@bnl.gov

January 2018

Version 1.01

Introduction

Purpose of this document

Please keep track of the version number located on top of this document. Once
incremental changes become significant the version number will be bumped up
and it’s important to refer to the right set of instructions.

There is a separate “overview” document which contains a general description of
how p3s works and what its components are. For the end user a lot of this detail
won’t matter since they are typically interested in just running a number of jobs
on resources provided by the system and following their progress, consulting the
log files if necessary. That’s the extent of the instructions found below.

Preparing to run

These instructions apply to the lxplus interactive Linux facility at CERN. To
set up access to p3s on that platform one needs to follow a few simple steps as
described below.

Get the p3s client software

At a minimum you need a client script (which is written in Python) to submit
job descriptions to p3s for execution. You will also benefit from looking at
job templates stored as JSON files in the p3s repository. If not already done
so, install p3s software at the location of your choice by cloning the content
from GitHub. For the purposes of this writeup, you are assumed to be on an
interactive node located at CERN such as lxplus. This step is done in two cases
only (so not often):

• you are justing starting to use the system
• you are informed that there was an update and you should switch to a

newer version

git clone https://github.com/DUNE/p3s.git

1

After you run this, your current directory will co ntain a subdirectory p3s. This
subdirectory will in turn contain a number of subdirectories. Of immediate
interest to you are the following:

• p3s/clients containing multiple client scripts with different functions
• p3s/documents with documentation (such as thiswriteup)
• p3s/inputs and it’s subdirectories such as jobs/larsfot with job definition

and wrapper script templates

Set up and verify the Python environment

The next step is CERN-specific. This needs to be done every time you have
a fresh interactive shell which you plan to use for p3s interaction. It may be
added to your log-in profile to save typing one extra line but can also be done
manually.

Activate the “Python virtual environment” by running this command

source ~np04dqm/public/vp3s/bin/activate

Change the directory to p3s/clients which is mentioned above. Run the script
to verify the environment:

./verifyImport.py

In the output you should see version of Python which is 3.5+, a couple of “OK”
messages and finally the word “Success”.

If anything is amiss, contact the developer.

Verify access to p3s server

While you can specify the server address and other parameters the p3s clients
need on the command line it is often more convenient just to run a script which
will set a few environment variables which to be used by default. For example,
if running at CERN you would simply use the command

source p3s/configuration/lxvm_np04dqm.sh

Then you don’t need to worry about the server URL etc. Other environment
variables contained in this file will be explained later in this document.

Now, you can switch to the “clients” directory and try to run the command:

./summary.py -P

If it connects to the server sucessfully, it will print a few current stats for p3s.
THe next step is to make sure that you can also see the Web pages served by p3s
so you have monitoring functionality. Try to access http://p3s-web.cern.ch
in your browser (if you are at CERN).

2

Currently the server p3s-web.cern.ch is only accessible within the confines of
the CERN firewall. If you want to access it from an external machine, please
use a ssh tunnel like in the command below

ssh -4 -L 8008:p3s-web.cern.ch:80 myCERNaccount@lxplus.cern.ch

. . . in which case pointing your browser to localhost:8008 will result in you seeing
the p3s server (which is on port 80 at CERN).

Running a job

Resources

Keep in mind that when you “submit a job” all you are doing is sending a record
containing all the info necessary for running a particular executable, to the p3s
database. The system (p3s) will then match this job with a live and available
batch slot in CERN Tier-0 facility and deploy the payload to it, which means

• typically very low latency of job execution since you are not waiting for a
HTConfor or other queue; in some cases such as busy HT Condor queues
gains can be quite substantial

• you don’t have to run batch commands yourself

• ease of automation since same template can be used in automated submis-
sion

• easy to read tabulated view of all of your jobs in the p3s monitor which is
a Web application

• the identity under which jobs are executed is not your identity but the
production identity. . . This can be helpful or not helpful depending on
situation, and path permissions need to be thought through. The NP04
group at CERN has access to various EOS and some AFS directories so
this can be made to work

An example of the job description

The following example (with rather arbitrary attributes, file names and variables)
demonstrates how JSON is used to describe jobs. Let us assume that we created
a file named “myjob.json” with the following contents:

[
{

"name": "p3s_test",

3

"timeout": "100",
"jobtype": "print_date",
"payload": "/home/userXYZ/my_executable.sh",
"env": {"P3S_MODE":"COPY","MYFILE":"/tmp/myfile.txt"},
"priority": "1",
"state": "defined"

}
]

Note that this format corresponds to a list of objects i.e. such file can naturally
contain a number of jobs; however having just one element in this list is absolutely
fine.

For the job to be eligible for execution the “state” attribute needs to be set to
“defined” as showed above. Other possible states will be discussed later. The
other two attributes that need t be set are the payload and env. They are
explained below. The remaining attributes of the job are less relevant for initial
testing.

The payload and the environment

The payload is the path of the script that will run. It is strongly recommended
that this is a shell wrapper, and the bash shell is most commonly used. If the
env attribute contains "P3S_MODE":"COPY" then the script will be copied into a
sandbox at execution time. Otherwise an attempt will be made to execute it in
situ which may or may not work depending on the permissions.

The env attribute defines the job environment in the Linux sense. It can be
used for most anything but in particular, it can be used to communicate to the
running job the names of input and output files. This is typically done in the
wrapper script itself, i.e. withing the wrapper we may find:

foo -i $MYFILE

In this example, the binary executable foo will read input data from the file
whose name is stored in the environment variable MYFILE. The name of this
environment variable does not matter as long as it is consistent with what’s in
the JSON file such as shown above.

Please note that the user has complete freedom as to how to factor the information
between the env attribute JSON file and the script. There are few limits in
desingning job descriptions.

4

“Hello, World!”

Use the template

Consider the following example which is in p3s/inputs/jobs directory of the repo
that you cloned from GitHub. The file name is “simplejob1.json”.

[
{
"name": "simple p3s job, type 1",
"timeout": "100",

"jobtype": "type1",
"payload": "/home/maxim/projects/p3s/inputs/jobs/simplejob1.sh",
"priority": "1",

"state": "defined",
"env": {

"P3S_TEST":"TRUE",
"P3S_MODE":"COPY",
"P3S_INPUT_FILE":"/home/maxim/p3s.in",
"P3S_OUTPUT_FILE":"/home/maxim/p3s.out"

}
}

]

This won’t work out of the box for you since it contains references to particular
paths which are very likely invalid on your system. So it needs to be tweaked a
little:

• please copy this file and edit your copy so that it points to the actual
location of the payload script (which must be readable by the np04-comp
group)

• likewise, when making edits please make sure that the input file location
is readable to members of np04-comp group at CERN (or just globally
readable) and the path to the output file can likewise be used (i.e. must
be writeable).

Note: while the “payload script” is named “simplejob1.sh” in this case , the
exact name is actually unimportant and can be changed, that’s just what it is
in this particular JSON template

#!/bin/bash

echo pid, ppid: $$ $PPID

if [-z ${P3S_INPUT_FILE+x}];
then

echo No input file specified, entering sleep mode

5

/bin/sleep 10
exit

fi

echo Using input file $P3S_INPUT_FILE

wc -l $P3S_INPUT_FILE > $P3S_OUTPUT_FILE

It is important that the path to simplejob1.sh is readable and executable for other
users, otherwise the system won’t be able to run it. For example, in lxplus it is
optimally placed in the “public” subdirectory in your account which is on AFS
and is open to public.

Submit the job

Now we can submit this job to the server. Assuming the p3s client software is
installed, and we changed to the “clients” directory, the following command can
be used (assuming the JSON file is in the current path)

./job.py -j ./simplejob1.json

And that’s it. The path to the JSON file can be anything, it just has to be
readable for your user identity. When looking at the monitoring pages of p3s this
job will be marked with your userID on the system from which you submitted it,
e.g. if you work on lxplus this will be your lxplus userID.

The job client script we use here and all clients in p3s suite support the “-h”
command line option which prints an annotated list of all command line options.
Take a look, it’s helpful.

“Test Wrapper”

There is a script which allows the user to test the setup of the JSON file and the
payload working together by running everything on an interactive node such as
lxplus as opposed to submitting it to lxbatch, which is often more convenient for
basic debugging. Similar to the “job” client presented above, the test wrapper
can be invoked from the p3s/clients directory as follows:

./testwrapper.py -j ./simplejob1.json

which is quite similar to normal submission. Like in the previous case, the “-h”
option will output helpful information. For example:

• -p option allows to override the path of the payload script i.e. in principle
you can run anything (i.e. any executable) using the same skeleton template

6

• -f and -F respectively overwrite the path defined by the P3S_INPUT_FILE
and P3S_OUTPUT_FILE

Note on environment variables

With rare exceptions such as P3S_MODE (likely to change) there is no semantic
importance to the exact names of the environment variables used in formulating
your job. The only thing that matters is that the payload script contained
correct references to the environment.

Log files

The p3s configuration file mentioned above (such as lxvm_np04dqm.sh) is not
used just by client scripts, but also by the server. As such, it contains other useful
info such as pointers to directories to keep log files for HTCondor submission of
pilot jobs, pilot logs and job logs. The latter will be of most interest for the end
user. Consider the following example:

[np04dqm@lxplus056 src]$ env | grep P3
P3S_PILOTLOG=/eos/experiment/neutplatform/protodune/np04tier0/p3s/pilotlog
P3S_JOBLOG=/eos/experiment/neutplatform/protodune/np04tier0/p3s/joblog
P3S_SERVER=http://p3s-web:80/
P3S_CONDOR_ERROR=/afs/cern.ch/work/n/np04dqm/condor
P3S_PILOTS=100
P3S_CONDOR_LOG=/afs/cern.ch/work/n/np04dqm/condor
P3S_PILOT_MAXRUNTIME=90000
P3S_PILOT_TO=1000
P3S_VERBOSITY=0
P3S_SITE=lxvm
P3S_CONDOR_BASE=/afs/cern.ch/work/n/np04dqm/condor
P3S_DIRPATH=/eos/experiment/neutplatform/protodune/np04tier0/p3s
P3S_CONDOR_OUTPUT=/afs/cern.ch/work/n/np04dqm/condor

We are taking advantage of availability of distributed file systems at CERN with
are visible from most nodes, i.e. all logs are kept in a single directory structure
which can be browsed by the user (as opposed to local disks on a few dedicated
nodes).

7

	Introduction
	Purpose of this document
	Preparing to run
	Get the p3s client software
	Set up and verify the Python environment
	Verify access to p3s server

	Running a job
	Resources
	An example of the job description
	The payload and the environment

	Hello, World!
	Use the template
	Submit the job
	Test Wrapper
	Note on environment variables

	Log files

