
Experience with FPGA HDK AMI and F1:
(all statements are subject to large systematic uncertainties)

Nhan

SDACCEL 2
Figure 2: PCIe Base Device

FPGA Co-processing Card

PC

CPU
Memory

FPGA Device

Infrastructure
IP

OpenCL
 Kernel

OpenCL
 Kernel

OpenCL
 Kernel

OpenCL
 Kernel

Memory

PCI
Express

X14981-050516

The main characteristics of devices with a PCIe form factor are as follows:

• The x86 or Power8 processor in the PC is the host processor for the OpenCL™ application.
• The infrastructure IP provided as part of the device is needed for communication to the

host over the PCIe core and to access the DDR memories on the board.
• Connecting OpenCL kernels to IP other than infrastructure IP or blocks generated by the

SDAccel™ development environment is not supported.
• Kernels work on data in the DDR memory attached to the FPGA.

OpenCL Memory Model
The OpenCL™ API defines the memory model to be used by all applications that comply with
the standard. This hierarchical representation of memory is common across all vendors and can
be applied to any OpenCL application. The vendor is responsible for defining how the OpenCL
memory model maps to specific hardware. The OpenCL memory model is shown overlaid onto
the OpenCL device model in the following figure.

Chapter 2: Understanding the OpenCL Pla*orm and Memory Model

SDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

9

Write “host” code

runs on CPU

Write “kernel” code

runs on FPGA

SCAccel converts the kernel code
into a form that is acceptable to

the kernel compiler which is
based on Vivado HLS

communicates through PCIe,
must be streaming (AXI)

SDACCEL MEMORY MODEL 3

Figure 3: OpenCL Memory Model

Host

CPU

Device

Built-in
Kernel

Compute
Unit

Compute
Unit

Compute
Unit

P
E

P
E

P
E

P
E

P
E

P
E

Host Memory

Global Memory +
Constant Memory

Local Memory

Private Memory

X14982-090315

The memory hierarchy defined in the OpenCL specification has the following levels:

• Host Memory
• Global Memory
• Constant Global Memory
• Local Memory
• Private Memory

Host Memory

The host memory is defined as the region of system memory that is only visible and accessible
to the host processor. The host processor has full control of this memory space and can read
and write from this space without any restrictions. Kernels cannot access data located in this
space. Any data needed by a kernel must be transferred into global memory so that it is
accessible by a compute unit.

Chapter 2: Understanding the OpenCL Pla*orm and Memory Model

SDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

10

WORKFLOW ON AWS
Write the host code and kernel code on a decently powered CPU

(I’m using t2.2xlarge)

Then make the “kernel” file, upload it to some place for the f1
instance to read it and run from an f1

Setting up, see the slack post pinned to #f1-business for recipes
for running:
https://github.com/Xilinx/SDAccel_Examples

4

https://github.com/Xilinx/SDAccel_Examples

WORKFLOW ON AWS
Write the host code and kernel code on a decently powered CPU

(I’m using t2.2xlarge)

Example project:

Compile the code: make check TARGETS=hw_emu DEVICES=$AWS_PLATFORM all
under the hood its using xocc (xilinx enabled open CL compiler?)
targets = sw_emu | hw_emu | hw
sw_emu ~ csim
hw_emu ~ csim + csynth
hw ~ make SDAccel firmware kernel (like bit file but for SDAccel platform)

5

host code

CL kernel code

Can also be HLS code

KERNEL CODE 6

memory declarations

in openCL, I decided not

to mess with this

“__global”

“__local”

Things that look like HLS  
pragmas  

 
__attribute__((xcl_pipeline_loop))

(OPENCL)

KERNEL CODE 7

(HLS)

Turns out there are actually some HLS examples in the Xilinix
SDAccel repo

e.g.
https://github.com/Xilinx/SDAccel_Examples/tree/master/
getting_started/kernel_to_gmem/burst_rw_c

All the examples with *_c are HLS examples

KERNEL CODE 8

(HLS)

now instead, you define
the ports to the global

memory using HLS
pragmas

HOST CODE 9

(OPENCL/HLS)

This is the same for
openCL or HLS

Have to be careful with
defining memory buffers

SDACCEL + HLS4ML
a first working example that combines with HLS4ML
https://github.com/nhanvtran/SDAccel_Examples/tree/first-try/
getting_started/host/hls4ml_1layer_hls

10

minimal changes
w.r.t the standard
HLS4ML project

here

entry point to
HLS4ML top

function

https://github.com/nhanvtran/SDAccel_Examples/tree/first-try/getting_started/host/hls4ml_1layer_hls
https://github.com/nhanvtran/SDAccel_Examples/tree/first-try/getting_started/host/hls4ml_1layer_hls

REPORTING

Because it’s built all on HLS, you get the usual report files

11

REPORTING

You also get this fancy HTML
file that I don’t know how to
parse yet

12

WHAT’S NEXT?
Actually run the full chain — have to create the kernel, upload to S3 disk and then read and
perform inference on the actual F1 instance

Understanding IO (Phil ++)
There are lots of schemes (and examples) for how to control the IO in the SDAccel
examples repo. Need to understand how to efficiently read the data into the FPGA —
stream, burst, etc…

Dataflow
Given an IO scheme, how do we control the data flow through the chip? All streaming/
serial? Try a pipelined setup (once data on/off-loaded)?

Build an extension of HLS4ML which makes an HLS-based SDAccel project instead of a bare
HLS project?

Benchmark a more beefy network implementation against a normal CPU and GPU?

What else am I missing?

13

