Validation of micro-triangulation with direct wire measurements in the LHC tunnel

Vasileios Vlachakis^{1,2}, Jean-Frederic Fuchs¹

¹ CERN, European Organization for Nuclear Research, Geneva, Switzerland ² Institute of Geodesy and Photogrammetry, Swiss Federal Institute of Technology, Zurich, Switzerland

International Workshop on Accelerator Alignment (IWAA), 8-12 October 2018 Fermi National Accelerator Laboratory, Batavia, Illinois

Introduction

Objective

Measure offsets between fiducial points and wire(s).

Method

Automatic micro-triangulation with direct wire observations.

Principle

Measure horizontal and vertical angles to targets and wire(s).

Problem

Observations to noncorresponding points on the wire.

Solution

Wire modeled as straight line, parabola, catenary.

Surveying network

Z-axis [m]

0.5

0.0

-0.5

90 80

Configuration

- 12 theodolite positions
- 2 series of measurement per position
- 13 magnet fiducial points
- 10 points on the tunnel wall
- 1 stretched wire

Least-squares adjustment

- 3312 observations
- 1233 unknown parameters
- Minimum constraints solution
- Robust fit with Iteratively reweighted observations
- Scale adopted by Laser Tracker measurements

Results

Y-axis [m]

95% confidence ellipses for the fiducials point and their projections on the wire

95% confidence intervals for the offsets between fiducials and wire

Comparison with ecartometry measurements on 26/02/2018.

1st day (27/02/2018)

0.5 1.0 X-axis [m]

- precision (1σ): 25 μm
- accuracy (rms): 170 µm

2nd day (28/02/2018)

- precision (1σ): 30 μm
- accuracy (rms): 60 µm

Equipment

Micro-triangulation measurement in the LHC tunnel Leica Nova TS60: · Robotic theodolite. • High accuracy: $0.5 \operatorname{arcsec} / 2.4 \frac{\mu m}{m}$ **QDaedalus:** Developed at ETH Zurich. Reversible replacement: eye-piece ↔ CCD

Ceramic spheres:

Ø 38 mm (1.5 inch).

Grade 40 (sphericity 1 µm).

- **Vectran wire:**
- · Multi thread. Ø 0.4 mm.

Line matching

Circle matching

Wire model

Vertical component of the deviation between the observation and the estimated wire

- 1st case: One straight line fit. We observe the catenary shape (≈2 cm for 80 m wire).
- 2nd case: One catenary fit. We observe two group of deviations (consistent with the day of measurement).
- 3rd case: **Two catenaries fit**. Standard deviation of the vertical deviations equals 0.16 mm (wire diameter equals 0.4 mm).

Conclusion

- Successful validation of the method in the LHC tunnel.
- Micro-triangulation can be used for to measure stretched-wire offsets.
- Precision at the level of a few tens of micrometres, depending on the conditions.
- The method is more time efficient in static configurations, but works well otherwise.
- Suitable for complex configurations with many wires.

- > Advantages: accurate, automatic, contactless, remote-controlled, portable
- ➤ Limitation: Lack of scale

- Future work:
 - > Hardware upgrade (e.g., new CCD camera, coaxial light).
 - Software tools development (towards automation).
 - ➤ Include more systematic effect in the model (e.g., curvature, refraction).
 - > Evaluation in more cases (e.g., multiple wires, vertical offset estimation).