Monitoring Measurements during the Construction Work for FAIR and Re-alignment of the GSI Machines for the Beam Time 2018

Andreas Junge, Ina Pschorn, Torsten Miertsch, Vasileios Velonas, Kerstin Knappmeier GSI Helmholzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany

CURRENT STATUS OF FAIR

FAIR (Facility for Antiproton and Ion Research) is one of the biggest research project and most complex accelerator center of the world (www.fair-center.eu).

The concrete work for preparing the tunnel of the SIS100 particle accelerator has started.

- Everything is prepared to link the existing SIS18 ring accelerator to the future SIS100 ring.
- The SIS18 particle accelerator is upgraded. It will serve as one acceleration stage for FAIR.
- Transformer station north was built.
- Groundwater lowering in construction site area is in process.

SIS100 tunnel – construction site (Aug. 2018)

MONITORING MEASUREMENTS DURING THE CONSTRUCTION WORK FOR FAIR

- Due to the current construction work for FAIR, significant deformations in the area of the existing GSI synchrotron (SIS18) and adjacent beamlines occurred in 2017/2018.
- High-precision 3D-network measurements were carried out at different epochs to monitor the magnitude of ground settlement. (Dec. 2017 – Apr. 2018)
- Using leveled Leica AT402 (no additionally leveling by Leica DNA03)
- Evaluation by the software PANDA (4 parameters Leica AT402 as tachymeter) and vertical adaptation at the area transfer channel 4 (TK4)
- Point accuracies from 0.02 to 0.06 mm

Monitoring area of the existing facility (red)

Vertical deviations

Beamplot – Transfer channel (vertical deviations)

Beamplot – Synchrotron SIS18 (vertical deviations)

Beamplot – Transfer channel (transversal deviations)

Beamplot – Synchrotron SIS18 (transversal deviations)

RESULTS OF MONITORING MEASUREMENTS

- Vertical and transversal movements up to 12 mm were detected!
- Re-alignment for beam time was necessary! Further deformations are not out of question!

Due to the time limit period regarding the re-alignment an intensive discussion was performed.

RE-ALIGNMENT STRATEGY

- In addition to the monitoring measurements of SIS18, all other machine areas were successively measured from Jan. to Apr. 2018 (FARO Vantage + Leica DNA03 / Leica AT402).
- In order to be able to realize the beam time 2018, a new alignment strategy was developed based on these measurements and with the aim of minimizing the alignment values.
- For this purpose the complete synchrotron, parts of the transfer channel and the high-energy beamline (HEST) were aligned intentionally on an inclined plane instead of the usual horizontal plane for the first time.

REALIZATION

- Basis: Measurements of the GSI machine (Jan. Apr. 2018) and evaluation in PANDA
- Datum definition V1 dipoles SIS18 (PANDA)
- Datum definition V2 HEST east side measurement of 2015 (SpatialAnalyzer)
- V1 was used for calculation of the current rotated nominal points → SIS18 on inclined plane → only vertical adaptation
- Vertical difference between the datum definitions V1 and V2 was -4.264 mm
- One level was used for the alignment (datum definition V2)

Transfer channel (TK)

- 3 parameter transformation (translation X / Y and rotation Z) of the datum definition V2 to GSI-NN nominals – vertical difference between TK (actual) and GSI-NN (nominals) 2.664 mm
- vertical adaptation of the TK GSI-NN nominal points of 2.664 mm
- Alignment from component 118 relating to GSI-NN horizontal nominal points (Z +2.664 mm)
- Alignment from component DK118 relating to rotated nominal points (inclined plane)

Synchrotron (SIS18)

Datum definition V1 was used to minimize radial alignment values

vertical adaptation of the rotated nominal points (inclined plane) by -4.264 mm

Alignment of all components in SIS18 on the inclined plane

High energy beam line (HEST)

- Datum definition V2 was used vertical adaptation of the rotated
- nominal points (inclined plane) by -4.264 mm
- Components to be aligned were defined by the machine coordinators
- 106 components were aligned by using Leica AT402/ FARO Vantage and Lucas Schaevitz Inclinometer

Measuring conditions during 3D-network measurements

RESULTS

Largest alignment range (5-6 mm transversal / 3 mm vertical) in the area of SIS18 injection

Alignment period May 2018 (25 working days)

Reached residual deviations after alignment ≤ 0.1 mm

The basic functionality of the machine SIS18 could be established without any closed orbit correction.

Vertical beamplot – after re-alignment (yellow line)

