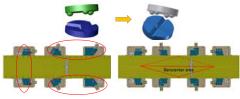


RESEARCH ON MECHANICAL & ALIGNMENT SYSTEM FOR HEPS-TF


Chunhua Li[†], Lei Wu, Haijing Wang, Shujin Li, Xiaolong Wang, Jia Liu, Zihao Wang Institute of High Energy Physics, Beijing, China

† lichunhua@ihep.ac.cn

HEPS is a new generation synchrotron facility with a challenging requirement of very low emittance, and the key technology difficulties are supposed to be overcome during the stage of HEPS-TF. For the mechanical & alignment system, the requirements are very stringent. The alignment error of magnets on a girder should be less than 30µm. Besides, the girder should be capable of doing beam-based alignment remotely to minimize the magnets position error during the runtime. To meet these requirements, studies on vibrating-wire alignment technique and auto-tuning magnet girder were carried out in HEPS-TF. This paper will describe the design and progress of those work.

Auto-tuning girder

- Design Features:
 - √ Adjustability: Cam mover + Ball transfer unit
 - ✓ Stability: Multi-support +Locking system
- Two prototypes developed:
 - Girder I: 3.3m, 6 support points
 - Girder II: 4.3m, 8 support points

Supporting scheme of girders

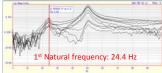
- With the kinematic design, Girder I is a fully constrained structure. Stepping motors are used to perform movement.
- Although Girder II is over-constraint, elastic property can make the 8 points loaded simultaneously. Servo motors are used to make sure the force balanced.
- Both girders are fully tested and show similar performance.

Good adjustability:

- Resolution: 1µm
- Precision:
 - ✓ Feedback: $1\mu m$, $\pm 0.1 mm$
- No feedback: 1 μ m, full moving range(X/Z: \pm 5mm; Y: \pm 10)

Ζ

Check & Fiducialization

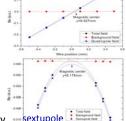


Stability: f_1 =24Hz

- Locked by mechanism;
- Not grouted on the floor.

Vibrating-wire alignment

◆ Align the magnets on a girder based on the magnetic center measurement, using a wire carrying AC current.



> Background field correction

- Experiment was conducted to verify the main source of background.
- Main source: Remnant field of nearby magnets

		Magnetic center position			
		No shield	shield	Δ	
Before	Χ	0.245	-0.019	0.264	
correction	Υ	-0.173	-0.184	0.011	
After	er X	-0.031	-0.032	0.001	
correction	Υ	-0.183	-0.180	0.003	

X&Y sensors for Vibration

Ø0.125 Be-Copper wire

Sag correction

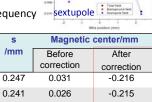
◆ Based on the measurement of 1st natural frequency Weights

/kg

1ka

1.1kg

1.15kg


/Hz

28.95

29.3

30.1

$$s = -\frac{4sag}{I^2} z_{\text{mag}}^2 + \frac{4sag}{I} z_{\text{mag}}$$

0.013

Repeatability: <±3μm</p>

Precision	Quadro	apole	Sextupole	
(µm)	10 times	5 days	10 times	5 days
Х	± 0.3	± 0.7	± 2.4	± 2.3
Υ	± 1.0	± 1.6	± 1.8	\pm 2.8

^{*}Ground vibration may be an issue, vibration isolated foundation is essential to avoid unexpected resonance of the wire.

Magnet adjusting

◆ Reading of DVRT is much more stable than Laser Tracker. It is very helpful to decrease magnet position errors.

0.228

• Magnetic center deviation can be less than 6μm after adjustment of magnet.

IWAA2018

-0.215